首页> 外文期刊>Diabetes >Molecular and Metabolic Evidence for Mitochondrial Defects Associated With β-Cell Dysfunction in a Mouse Model of Type 2 Diabetes
【24h】

Molecular and Metabolic Evidence for Mitochondrial Defects Associated With β-Cell Dysfunction in a Mouse Model of Type 2 Diabetes

机译:2型糖尿病小鼠模型中与β细胞功能障碍相关的线粒体缺陷的分子和代谢证据。

获取原文
获取原文并翻译 | 示例
       

摘要

OBJECTIVE-The inability of pancreatic β-cells to appropriately respond to glucose and secrete insulin are primary defects associated with β-cell failure in type 2 diabetes. Mitochondrial dysfunction has been implicated as a key factor in the development of type 2 diabetes; however, a link between mitochondrial dysfunction and defective insulin secretion is unclear.rnRESEARCH DESIGN AND METHODS-We investigated the changes in islet mitochondrial function and morphology during progression from insulin resistance (3 weeks old), immediately before hyperglycemia (5 weeks old), and after diabetes onset (10 weeks old) in transgenic MKR mice compared with controls. The molecular and protein changes at 10 weeks were determined using microarray and iTRAQ proteomic screens.rnRESULTS-At 3 weeks, MKR mice were hyperinsulinemic but normoglycemic and β-cells showed negligible mitochondrial or morphological changes. At 5 weeks, MKR islets displayed abrogated hyperpolarization of mitochondrial membrane potential (Δψ_m), reduced mitochondrial Ca~(2+) uptake, slightly enlarged mitochondria, and reduced glucose-stimulated insulin secretion. By 10 weeks, MKR mice were hyperglycemic and hyperinsulinemic and β-cells contained swollen mitochondria with disordered cristae. β-cells displayed impaired stimulus-secretion coupling including reduced hyperpolarization of Δψ_m, impaired Ca~(2+)-signaling, and reduced glucose-stimulated ATP/ADP and insulin release. Furthermore, decreased cytochrome c oxidase- dependent oxygen consumption and signs of oxidative stress were observed in diabetic islets. Protein profiling of diabetic islets revealed that 36 mitochondrial proteins were differentially expressed, including inner membrane proteins of the electron transport chain.rnCONCLUSIONS-We provide novel evidence for a critical role of defective mitochondrial oxidative phosphorylation and morphology in the pathology of insulin resistance-induced β-cell failure.
机译:目的-胰腺β细胞不能适当响应葡萄糖和分泌胰岛素是2型糖尿病患者β细胞衰竭的主要缺陷。线粒体功能障碍已被认为是2型糖尿病发展的关键因素。研究设计和方法-我们调查了胰岛素抵抗(3周龄),高血糖之前(5周龄)之前,胰岛线粒体功能和形态的变化。与对照组相比,转基因MKR小鼠糖尿病发作后(10周大)。结果:在10周时,通过微阵列和iTRAQ蛋白质组学筛查确定了分子和蛋白质的变化。结果-在3周时,MKR小鼠为高胰岛素血症,但血糖正常,β细胞的线粒体或形态学变化可忽略不计。在第5周,MKR胰岛显示线粒体膜电位(Δψ_m)消除了超极化,线粒体Ca〜(2+)吸收减少,线粒体略有增大,并且葡萄糖刺激的胰岛素分泌减少。到10周时,MKR小鼠出现了高血糖和高胰岛素血症状态,β细胞的线粒体肿胀,cr部紊乱。 β细胞显示出刺激-分泌偶联受损,包括Δψ_m的超极化减少,Ca〜(2+)信号受损,葡萄糖刺激的ATP / ADP和胰岛素释放减少。此外,在糖尿病胰岛中观察到细胞色素c氧化酶依赖性氧消耗减少和氧化应激迹象。糖尿病胰岛的蛋白质谱分析显示36种线粒体蛋白差异表达,包括电子传输链的内膜蛋白。rn结论-我们提供了新的证据,证明线粒体氧化磷酸化和形态缺陷在胰岛素抵抗诱导的β病理中的关键作用-单元故障。

著录项

  • 来源
    《Diabetes》 |2010年第2期|448-459|共12页
  • 作者单位

    Departments of Physiology and Medicine, Faculty of Medicine,University of Toronto, Toronto, Canada;

    Departments of Physiology and Medicine, Faculty of Medicine,University of Toronto, Toronto, Canada;

    Departments of Physiology and Medicine, Faculty of Medicine,University of Toronto, Toronto, Canada;

    Departments of Physiology and Medicine, Faculty of Medicine,University of Toronto, Toronto, Canada;

    Departments of Physiology and Medicine, Faculty of Medicine,University of Toronto, Toronto, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:46:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号