首页> 外文期刊>Research in Number Theory >On the number of residues of linear recurrences
【24h】

On the number of residues of linear recurrences

机译:关于线性复发的残留量

获取原文
           

摘要

For every nonconstant monic polynomial g ∈ Z [ X ] documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$g in mathbb {Z}[X]$$end{document} , let M ( g ) documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$mathfrak {M}(g)$$end{document} be the set of positive integers m for which there exist an integer linear recurrence ( s n ) n ≥ 0 documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$(s_n)_{n ge 0}$$end{document} having characteristic polynomial g and a positive integer M such that ( s n ) n ≥ 0 documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$(s_n)_{n ge 0}$$end{document} has exactly m distinct residues modulo M . Dubickas and Novikas proved that M ( X 2 - X - 1 ) = N documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$mathfrak {M}(X^2 - X - 1) = mathbb {N}$$end{document} . We study M ( g ) documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$mathfrak {M}(g)$$end{document} in the case in which g is divisible by a monic quadratic polynomial f ∈ Z [ X ] documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$f in mathbb {Z}[X]$$end{document} with roots α , β documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$lpha ,eta $$end{document} such that α β = ± 1 documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$lpha eta = pm 1$$end{document} and α / β documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$lpha / eta $$end{document} is not a root of unity. We show that this problem is related to the existence of special primitive divisors of certain Lehmer sequences, and we deduce some consequences on M ( g ) documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$mathfrak {M}(g)$$end{document} . In?particular, for α β = - 1 documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$lpha eta = -1$$end{document} , we prove that m ∈ M ( g ) documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$m in mathfrak {M}(g)$$end{document} for every integer m ≥ 7 documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$m ge 7$$end{document} with m ≠ 10 documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$m e 10$$end{document} and 4 ? m documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$4 ot mid m$$end{docume
机译:对于每个不共同的黑色多项式g∈z [x] documentClass [12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeez} setLength { oddsidemargin} { - 69pt} begin {document} $$ g in mathbb {z} [x] $$ end {document},让m(g) documentclass [12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsidemargin} {-69pt} begin {document} $$ mathfrak {m}(g)$$ end {document}是存在整数线性复发(sn)n≥0 documentclass [12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage {amssy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsidemargin} {-69pt} begin {document} $ $(s_n)_ {n ge 0} $$ end {document}具有特征多项式g和pos Itive Integer M使得(SN)n≥0 documentClass [12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsidemargin} {-69pt} begin {document} $$(s_n)$$(s_n)_ {n ge 0} $$ end {document}完全是m个不同的残留modulo m。 Dubickas和Novikas证明了M(x 2 - x - 1)= n documentclass [12pt] {minimal} usepackage {ammath} usepackage {keysym} usepackage {amsfonts} usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsideDemargin} { - 69pt} begin {document} $$ mathfrak {m}(x ^ 2 - x - 1)= mathbb {n} $$ end {文档} 。我们研究m(g) documentClass [12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsidemargin} { - 69pt} begin {document} $$$ mathfrak {m}(g)$$ end {document}在G由Monic二次多项式f∈Z[x]中可分解的情况下 DocumentClass [12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsidemargin} { -69pt} begin {document} $$ f in mathbb {z} [x] $$ end {document}用根α,β documentclass [12pt] {minimal} usepackage {ammath} usepackage {isysym } usepackage {amsfonts} usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeez} setLength { oddsideDemargin} { - 69pt} begin {document} $$ alpha, beta $$ 结束{document},使得αβ=±1 DocumentClass [12pt] {minimal} usepackage {ammath} usepackage {isysym} 我们epackage {amsfonts} usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsidemargin} { - 69pt} begin {document} $$ alpha beta = pm 1 $ $ end {document}和α/β documentClass [12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage {amssys} usepackage {mathrsfs} usepackage {submeek} setLength { oddsidemargin} { - 69pt} begin {document} $$ alpha / beta $$$ end {document}不是团结的根源。我们表明这个问题与某些LEHMER序列的特殊原始除数的存在有关,并且我们对M(g) documentClass [12pt] {minimal} usepackage {ammath} usepackage {keyysym} usepackage {keyysym} usepackage { amsfonts} usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsidemargin} { - 69pt} begin {document} $$ mathfrak {m}(g)$$结束{document}。在?特定的是,对于αβ= - 1 documentClass [12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage {amsbsy} usepackage {mathrsfs} usepackage {mathrsfs} {supmeek} setLength { oddsideDemargin} { - 69pt} begin {document} $$ alpha beta = -1 $$ end {document},我们证明了m∈m(g) documentclass [12pt] { minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsidemargin} { - 69pt} begin {文档} $$ m in mathfrak {m}(g)$$ end {document}每个整数m≥7 documentclass [12pt] {minimal} usepackage {ammath} usepackage {keysym} usepackage {amsfonts } usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeez} setLength { oddsideDemargin} { - 69pt} begin {document} $$ m ge 7 $$$ en {document} m≠10 documentclass [12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage {amssymb} Ackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsideDemargin} { - 69pt} begin {document} $$ m ne 10 $$$ end {document}和4? m documentClass [12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmez} setLength { oddsidemargin} {-69pt} begin {document} $$ 4 not mid m $$ end {docume

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号