...
首页> 外文期刊>PLoS Computational Biology >From spikes to intercellular waves: Tuning intercellular calcium signaling dynamics modulates organ size control
【24h】

From spikes to intercellular waves: Tuning intercellular calcium signaling dynamics modulates organ size control

机译:从尖刺到细胞外波:调整细胞间钙信号动态调制器官尺寸控制

获取原文

摘要

Information flow within and between cells depends significantly on calcium (Ca2+) signaling dynamics. However, the biophysical mechanisms that govern emergent patterns of Ca2+ signaling dynamics at the organ level remain elusive. Recent experimental studies in developing Drosophila wing imaginal discs demonstrate the emergence of four distinct patterns of Ca2+ activity: Ca2+ spikes, intercellular Ca2+ transients, tissue-level Ca2+ waves, and a global “fluttering” state. Here, we used a combination of computational modeling and experimental approaches to identify two different populations of cells within tissues that are connected by gap junction proteins. We term these two subpopulations “initiator cells,” defined by elevated levels of Phospholipase C (PLC) activity, and “standby cells,” which exhibit baseline activity. We found that the type and strength of hormonal stimulation and extent of gap junctional communication jointly determine the predominate class of Ca2+ signaling activity. Further, single-cell Ca2+ spikes are stimulated by insulin, while intercellular Ca2+ waves depend on Gαq activity. Our computational model successfully reproduces how the dynamics of Ca2+ transients varies during organ growth. Phenotypic analysis of perturbations to Gαq and insulin signaling support an integrated model of cytoplasmic Ca2+ as a dynamic reporter of overall tissue growth. Further, we show that perturbations to Ca2+ signaling tune the final size of organs. This work provides a platform to further study how organ size regulation emerges from the crosstalk between biochemical growth signals and heterogeneous cell signaling states.
机译:细胞内和细胞之间的信息在钙(CA2 +)信令动态上显着取决于钙(CA2 +)信号动态。然而,在器官级别管理CA2 +信令动态的紧急模式的生物物理机制仍然难以捉摸。开发果蝇翼型成像盘的最新实验研究表明,Ca2 +活性的四种不同图案的出现:Ca2 +尖峰,细胞间Ca2 +瞬变,组织级Ca2 +波和全球“飘飘”状态。在这里,我们使用了计算建模和实验方法的组合来鉴定由间隙结蛋白连接的组织中的两种不同的细胞群。通过升高的磷脂酶C(PLC)活性和“备用细胞”,我们术语这两个亚群“引发剂细胞”术语术语升高而术语。我们发现,荷尔蒙刺激的类型和强度和间隙连接通信的程度联合确定了Ca2 +信号传导活动的占优势类。此外,通过胰岛素刺激单细胞Ca2 +尖峰,而细胞间Ca2 +波取决于GαQ活性。我们的计算模型成功地再现了CA2 +瞬变的动态在器官生长期间变化的变化。 Gαq和胰岛素信号传导扰动的表型分析支持细胞质CA2 +的综合模型作为整体组织生长的动态记者。此外,我们表明对CA2 +信令调谐的扰动的器官的最终尺寸。这项工作提供了一个平台,进一步研究器官尺寸调节如何从生物化学生长信号和异质细胞信号状态之间的串扰中出现的方式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号