首页> 外文期刊>Molecular Plant-Microbe Interactions >Investigating the Involvement of Cytoskeletal Proteins MreB and FtsZ in the Origin of Legume-Rhizobial Symbiosis
【24h】

Investigating the Involvement of Cytoskeletal Proteins MreB and FtsZ in the Origin of Legume-Rhizobial Symbiosis

机译:调查细胞骨骼蛋白MREB和FTSZ参与豆类根瘤菌共生起源

获取原文
           

摘要

Rhizobia are rod-shaped bacteria that form nitrogen-fixing root nodules on leguminous plants; however, they don’t carry MreB, a key determinant of rod-like cell shape. Here, we introduced an actin-like mreB homolog from a pseudomonad into Mesorhizobium huakuii 7653R (a microsymbiont of Astragalus sinicus L.) and examined the molecular, cellular, and symbiotic phenotypes of the resultant mutant. Exogenous mreB caused an enlarged cell size and slower growth in laboratory medium. However, the mutant formed small, ineffective nodules on A. sinicus (Nod Fix?), and rhizobial cells in the infection zone were unable to differentiate into bacteroids. RNA sequencing analysis also revealed minor effects of mreB on global gene expression in free-living cells but larger effects for cells grown in planta. Differentially expressed nodule-specific genes include cell cycle regulators such as the tubulin-like ftsZ1 and ftsZ2. Unlike the ubiquitous FtsZ1, an FtsZ2 homolog was commonly found in Rhizobium, Sinorhizobium, and Mesorhizobium spp. but not in closely related nonsymbiotic species. Bacterial two-hybrid analysis revealed that MreB interacts with FtsZ1 and FtsZ2, which are targeted by the host-derived nodule-specific cysteine-rich peptides. Significantly, MreB mutation D283A disrupted the protein–protein interactions and restored the aforementioned phenotypic defects caused by MreB in M. huakuii. Together, our data indicate that MreB is detrimental for modern rhizobia and its interaction with FtsZ1 and FtsZ2 causes the symbiotic process to cease at the late stage of bacteroid differentiation. These findings led to a hypothesis that loss of mreB in the common ancestor of members of Rhizobiales and subsequent acquisition of ftsZ2 are critical evolutionary steps leading to legume-rhizobial symbiosis. Copyright ? 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
机译:根线是杆状细菌,可在豆科植物上形成氮固定的根结节;然而,它们不会携带MREB,是杆状细胞形状的关键决定因素。在这里,我们将肌动蛋白的MREB同源物从假蛋白酶介绍到梅花群Huakuii 7653R(Astragalus sinicus L的微生物中)。检查所得突变体的分子,细胞和共生表型。外源性MREB引起了实验室介质的较大细胞尺寸和较慢的生长。然而,在A. Sinicus(Nod Fix?)上形成的突变体,无效的结节,感染区中的根瘤菌细胞不能分化为杆状体。 RNA测序分析还揭示了MREB对自由活细胞中全球基因表达的轻微影响,但在Planta中生长的细胞的影响较大。差异表达的结节特异性基因包括细胞周期调节剂,例如管蛋白状FTSZ1和FTSZ2。与无处不在的FTSZ1不同,FTSZ2同源物通常在Rhizobium,Sinorhizobium和Mesorhizobium SPP中发现。但不是密切相关的非洲非洲生物物种。细菌双杂化分析表明,MREB与FTSZ1和FTSZ2相互作用,其由宿主衍生的结节特异性半胱氨酸的富含肽靶向。显着地,MREB突变D283A破坏了蛋白质 - 蛋白质相互作用,并恢复了由M. Huakuii的MREB引起的上述表型缺陷。我们的数据表明,MREB对现代无根瘤菌有害,其与FTSZ1和FTSZ2的相互作用导致共生过程在菌体分化的后期停止。这些调查结果导致了一个假设,即流变群体成员的共同祖先和随后收购FTSZ2的MREB中的损失是导致豆类植物分享中的关键进化步骤。版权? 2021提交人。这是在CC By-NC-ND 4.0国际许可下分发的开放式访问文章。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号