...
首页> 外文期刊>Fluids >A Hybrid Continuum-Particle Approach for Fluid-Structure Interaction Simulation of Red Blood Cells in Fluid Flows
【24h】

A Hybrid Continuum-Particle Approach for Fluid-Structure Interaction Simulation of Red Blood Cells in Fluid Flows

机译:流体流动中红细胞流体结构相互作用模拟的混合连续颗粒方法

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Transport of cells in fluid flow plays a critical role in many physiological processes of the human body. Recent developments of in vitro techniques have enabled the understanding of cellular dynamics in laboratory conditions. However, it is challenging to obtain precise characteristics of cellular dynamics using experimental method alone, especially under in vivo conditions. This challenge motivates new developments of computational methods to provide complementary data that experimental techniques are not able to provide. Since there exists a large disparity in spatial and temporal scales in this problem, which requires a large number of cells to be simulated, it is highly desirable to develop an efficient numerical method for the interaction of cells and fluid flows. In this work, a new Fluid-Structure Interaction formulation is proposed based on the use of hybrid continuum-particle approach, which can resolve local dynamics of cells while providing large-scale flow patterns in the vascular vessel. Here, the Dissipative Particle Dynamics (DPD) model for the cellular membrane is used in conjunction with the Immersed Boundary Method (IBM) for the fluid plasma. Our results show that the new formulation is highly efficient in computing the deformation of cells within fluid flow while satisfying the incompressibility constraints of the fluid. We demonstrate that it is possible to couple the DPD with the IBM to simulate the complex dynamics of Red Blood Cells (RBC) such as parachuting. Our key observation is that the proposed coupling enables the simulation of RBC dynamics in realistic arterioles while ensuring the incompressibility constraint for fluid plasma. Therefore, the proposed method allows an accurate estimation of fluid shear stresses on the surface of simulated RBC. Our results suggest that this hybrid methodology can be extended for a variety of cells in physiological conditions.
机译:在流体流动中的细胞运输在人体的许多生理过程中起着关键作用。最近的体外技术的发展使得在实验室条件下能够了解蜂窝动态。然而,通过单独使用实验方法获得细胞动力学的精确特征是挑战,特别是在体内条件下。这一挑战激励了计算方法的新发展,以提供实验技术无法提供的互补数据。由于在该问题中存在很大的空间和时间尺度,这需要模拟大量细胞,因此非常希望开发用于细胞和流体流动的相互作用的有效数值方法。在这项工作中,基于使用混合式连续颗粒方法的使用,提出了一种新的流体结构相互作用配方,这可以解决细胞的局部动态,同时在血管容器中提供大规模的流动模式。这里,用于细胞膜的耗散粒子动力学(DPD)模型与用于流体等离子体的浸没的边界法(IBM)结合使用。我们的研究结果表明,新配方在计算流体流动内细胞的变形时高效,同时满足流体的不可压制性约束。我们证明可以将DPD与IBM耦合以模拟红细胞(RBC)的复杂动态,例如跳伞。我们的关键观察是,所提出的耦合能够在现实的动脉杆菌中模拟RBC动力学,同时确保流体等离子体的不可压缩性限制。因此,该方法允许精确地估计模拟RBC表面上的流体剪切应力。我们的研究结果表明,这种混合方法可以延长生理条件下的各种细胞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号