首页> 外文期刊>Coatings >Numerical Simulation and Parameter Analysis of Electromagnetic Riveting Process for Ti-6Al-4V Titanium Rivet
【24h】

Numerical Simulation and Parameter Analysis of Electromagnetic Riveting Process for Ti-6Al-4V Titanium Rivet

机译:Ti-6Al-4V钛铆钉电磁铆接过程的数值模拟与参数分析

获取原文
           

摘要

Electromagnetic riveting process (EMR) is a high-speed impact connection technology with the advantages of fast loading speed, large impact force and stable rivet deformation. In this work, the axisymmetric sequential and loose electromagnetic-structural coupling simulation models were conducted to perform the electromagnetic riveting process of a Ti-6Al-4V titanium rivet, and the parameter analysis of the riveting setup was performed based on the sequential coupled simulation results. In addition, the single-objective optimization problem of punch displacement was conducted using the Hooke–Jeeves algorithm. Based on the adaptive remeshing technology adopted in air meshes, the deformation calculated in the structural field was well transferred to the electromagnetic field in the sequential coupled model. Thus, the sequential coupling simulation results presented higher accuracy on the punch speed and rivet deformation than the loose coupling numerical model. The maximum relative difference of electromagnetic force (EMF) on driver plate and radial displacement in the rivet shaft was 34.86% and 13.43%, respectively. The parameter analysis results showed that the outer diameter and the height of the driver plate had a significant first-order effect on the response of displacement, while the platform height, transition zone height, angle, and transition zone width of the amplifier presented a strong interaction effect. Using the obtained results on the optimal structural parameters, the punch speed was effectively improved from 6.13 to 8.12 m/s with a 32.46% increase. Furthermore, the displacement of the punch increasing from 3.38 to 3.81 mm would lead to an 80.55% increase in the maximum radial displacement of the rivet shaft. This indicated that the deformation of the rivet was efficiently improved by using the optimal rivet model.
机译:电磁铆接工艺(EMR)是一种高速冲击连接技术,负载速度快,冲击力大,铆钉变形较大。在这项工作中,进行了轴对称顺序和松动的电磁结构耦合模拟模型以执行Ti-6AL-4V铆钉的电磁铆接过程,并且基于顺序耦合仿真结果进行铆接设置的参数分析。此外,使用Hooke-Jeeves算法进行了打孔位移的单目标优化问题。基于空气网格采用的自适应倒闭技术,在结构场中计算的变形良好地转移到序贯耦合模型中的电磁场。因此,顺序耦合仿真结果呈现比松动耦合数模型的冲压速度和铆钉变形的更高精度。铆钉轴上驾驶板和径向位移的电磁力(EMF)的最大相对差异分别为34.86%和13.43%。参数分析结果表明,驱动板的外径和高度对位移的响应具有显着的一阶效果,而放大器的平台高度,过渡区高度,角度和过渡区宽度呈现出强大的互动效应。使用所得结果对最佳结构参数,冲压速度从6.13从6.13增加到8.12米/秒,增加32.46%。此外,从3.38增加到3.81mm的冲孔的位移将导致铆钉轴的最大径向位移增加80.55%。这表明通过使用最佳铆钉模型有效地改善了铆钉的变形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号