...
首页> 外文期刊>Frontiers in Public Health >Dosimetric Deviations of Bragg-Peak Position Shifts in Uniform Magnetic Fields for Magnetic Resonance Imaging-Guiding Proton Radiotherapy: A Monte Carlo Study
【24h】

Dosimetric Deviations of Bragg-Peak Position Shifts in Uniform Magnetic Fields for Magnetic Resonance Imaging-Guiding Proton Radiotherapy: A Monte Carlo Study

机译:Bragg-峰值位置在磁共振成像 - 引导质子放射治疗均匀磁场中的吹交峰位置的偏移:蒙特卡罗研究

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Objective: To investigate dosimetric deviations in scanning protons for Bragg-peak position shifts, which were caused by proton spiral tracks in an ideal uniform field of magnetic resonance (MRI) imaging-guided proton radiotherapy (MRI-IGPRT). Methods: The FLUKA Monte-Carlo (MC) code was used to simulate the spiral tracks of protons penetrating water with initial energies of 70–270 MeV under the influence of field strength of 0.0–3.0 Tesla in commercial MRI systems. Two indexes, lateral shift (marked as WD ) perpendicular to the field and a penetration-depth shift (marked as Δ DD ) along the beam path, were employed for the Bragg-peak position of spiral proton track analysis. A comparison was performed between MC and classical analytical model to check the simulation results. The shape of the 2D/3D dose distribution of proton spots at the depth of Bragg-Peak was also investigated. The ratio of Gaussian-fit value between longitudinal and transverse major axes was used to indicate the asymmetric index. The skewness of asymmetry was evaluated at various dose levels by the radius ratio of circumscribed and inscribed circles by fitting a semi-ellipse circle of 2D distribution. Results: The maximum of WD deflection is 2.82 cm while the maximum of shortening Δ DD is 0.44 cm for proton at 270 MeV/u under a magnetic field of 3.0 Tesla. The trend of WD and Δ DD from MC simulation was consistent with the analytical model, which means the reverse equation of the analytical model can be applied to determine the proper field strength of the magnet and the initial energy of the proton for the planned dose. The asymmetry of 2D/3D dose distribution under the influence of a magnetic field was increased with higher energy, and the skewness of asymmetry for one proton energy at various dose levels was also increased with a larger radius, i.e., a lower dose level. Conclusions: The trend of the spiral proton track under a uniform magnetic field was obtained in this study using either MC simulation or the analytical model, which can provide an optimized and planned dose of the proton beam in the clinical application of MRI-IGPRT.
机译:目的:探讨扫描质子扫描质子的剂量偏差,这是由质子螺旋轨道引起的磁共振(MRI)成像原子放射疗法(MRI-IGPRT)的理想均匀领域引起的。方法:Fluka Monte-Carlo(MC)代码用于模拟质子穿透水的螺旋轨道,初始能量为70-270 MeV,在商业MRI系统中0.0-3.0特斯拉的影响。用于沿光束路径垂直于该字段的两个索引,垂直于该场的横向移位(标记为WD)和沿光束路径的穿透深度移位(标记为ΔDD),用于螺旋质子轨道分析的布拉格峰值位置。在MC和经典分析模型之间进行比较以检查模拟结果。还研究了Bragg-Peak深度的质子斑点的2D / 3D剂量分布的形状。纵向和横向主轴之间的高斯拟合值的比率用于表示不对称指数。通过拟合2D分布的半椭圆形圈,在各种剂量水平下以各种剂量水平评估不对称的偏斜度。结果:WD偏转的最大值为2.82厘米,而在3.0特斯拉的磁场下,在270 mev / u的质子的缩短Δdd的最大值为0.44厘米。来自MC仿真的WD和δDD的趋势与分析模型一致,这意味着可以应用分析模型的反向方程来确定磁体的适当场强和针对计划剂量的质子的初始能量。在磁场的影响下的2D / 3D剂量分布的不对称性随着较高的能量而增加,并且在各种剂量水平下对一个质子能量的不对称性的倾斜也随着较大的半径而增加,即剂量水平。结论:使用MC仿真或分析模型在该研究中获得均匀磁场下螺旋质子轨道的趋势,可以在MRI-IGPRT的临床应用中提供优化和计划剂量的质子束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号