首页> 外文期刊>Geoscientific Model Development Discussions >Surface representation impacts on turbulent heat fluxes in the Weather Research and Forecasting (WRF) model (v.4.1.3)
【24h】

Surface representation impacts on turbulent heat fluxes in the Weather Research and Forecasting (WRF) model (v.4.1.3)

机译:表面表示对天气研究和预测(WRF)模型的湍流热通量的影响(V.4.1.3)

获取原文
           

摘要

The water and energy transfers at the interface between the Earth's surface and the atmosphere should be correctly simulated in numerical weather and climate models. This implies the need for a realistic and accurate representation of land cover (LC), including appropriate parameters for each vegetation type. In some cases, the lack of information and crude representation of the surface lead to errors in the simulation of soil and atmospheric variables. This work investigates the ability of the Weather Research and Forecasting (WRF) model to simulate surface heat fluxes in a heterogeneous area of southern France using several possibilities for the surface representation. In the control experiments, we used the default LC database in WRF, which differed significantly from the actual LC. In addition, sub-grid variability was not taken into account since the model uses, by default, only the surface information from the dominant LC category in each pixel (dominant approach). To improve this surface simplification, we designed three new interconnected numerical experiments with three widely used land surface models (LSMs) in WRF. The first one consisted of using a more realistic and higher-resolution LC dataset over the area of analysis. The second experiment aimed at investigating the effect of using a mosaic approach; 30?m sub-grid surface information was used to calculate the final grid fluxes based on weighted averages from values obtained for each LC category. Finally, in the third experiment, we increased the model stomatal conductance for conifer forests due to the large flux errors associated with this vegetation type in some LSMs. The simulations were evaluated with gridded area-averaged fluxes calculated from five tower measurements obtained during the Boundary-Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign. The results from the experiments differed depending on the LSM and displayed a high dependency of the simulated fluxes on the specific LC definition within the grid cell, an effect that was enhanced with the dominant approach. The simulation of the fluxes improved using the more realistic LC dataset except for the LSMs that included extreme surface parameters for coniferous forest. The mosaic approach produced fluxes more similar to reality and served to particularly improve the latent heat flux simulation of each grid cell. Therefore, our findings stress the need to include an accurate surface representation in the model, including soil and vegetation sub-grid information with updated surface parameters for some vegetation types, as well as seasonal and man-made changes. This will improve the modelled heat fluxes and ultimately yield more realistic atmospheric processes in the model.
机译:在地球表面和气氛之间的界面处的水和能量转移应在数值天气和气候模型中正确模拟。这意味着需要对陆地覆盖(LC)的现实和准确表示,包括每个植被类型的适当参数。在某些情况下,表面缺乏信息和原油表示导致土壤和大气变量的模拟中的误差。这项工作调查了天气研究和预测(WRF)模型在法国南部异构地区模拟表面热量的能力,使用表面表示的几种可能性。在控制实验中,我们使用WRF中的默认LC数据库,从实际LC中显着不同。此外,由于模型使用,因此,默认情况下,由于模型仅使用来自每个像素(优势方法)的主导LC类别的表面信息,因此不考虑子网格可变性。为了提高这种表面简化,我们设计了三种新的WRF中使用三种广泛使用的土地表面模型(LSM)的新互连的数值实验。第一个在分析区域上使用更现实和更高分辨率的LC数据集。第二种实验旨在调查使用马赛克方法的影响; 30?M子网格表面信息用于基于来自每个LC类别的值的加权平均值来计算最终电网通量。最后,在第三个实验中,由于在一些LSM中,由于与该植被类型相关的磁通误差,我们提高了针叶树林的模型气孔导度。通过在边界层后下午和日落湍流(BLLAST)场运动中获得的五个塔测量计算的网格面积平均磁通量进行了评估。来自实验的结果根据LSM而不同,并且显示了在网格电池内的特定LC定义上的模拟通量的高依赖性,这是通过主导方法增强的效果。除了包括针叶林的极端表面参数的LSM之外,使用更现实的LC数据集可以改善助量的模拟。马赛克方法产生了更类似于现实的助熔剂,并提供特别改善每个网格电池的潜热通量模拟。因此,我们的研究结果强调需要在模型中包括准确的表面表示,包括土壤和植被子网格信息,其中一些植被类型的表面参数,以及季节性和人为变化。这将改善模型的热通量,并最终在模型中产生更现实的大气过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号