首页> 外文期刊>The Astrophysical journal >HCN Production in Titan’s Atmosphere: Coupling Quantum Chemistry and Disequilibrium Atmospheric Modeling
【24h】

HCN Production in Titan’s Atmosphere: Coupling Quantum Chemistry and Disequilibrium Atmospheric Modeling

机译:泰坦大气层的HCN生产:耦合量子化学和不平衡大气建模

获取原文
           

摘要

Hydrogen cyanide (HCN) is a critical reactive source of nitrogen for building key biomolecules relevant for the origin of life. Still, many HCN reactions remain uncharacterized by experiments and theory, and the complete picture of HCN production in planetary atmospheres is not fully understood. To improve this situation, we develop a novel technique making use of computational quantum chemistry, experimental data, and atmospheric numerical simulations. First, we use quantum chemistry simulations to explore the entire field of possible reactions for a list of primary species in N_(2)-, CH_(4)-, and H_(2)-dominated atmospheres. In this process, we discover 33 new reactions with no previously known rate coefficients. From here, we develop a consistent reduced atmospheric hybrid chemical network (CRAHCN) containing experimental values when available and our calculated rate coefficients otherwise. Next, we couple CRAHCN to a 1D chemical kinetic model (ChemKM) to compute the HCN abundance as a function of atmospheric depth on Titan. Our simulated atmospheric HCN profile agrees very well with the Cassini observations. CRAHCN contains 104 reactions; however, nearly all of the simulated atmospheric HCN profile can be obtained using a scaled-down network of only 19 dominant reactions. From here, we form a complete picture of HCN chemistry in Titan's atmosphere, from the dissociation of the main atmospheric species, down to the direct production of HCN along four major channels. One of these channels was first discovered and characterized in Pearce et al. and this work.
机译:氰化氢(HCN)是用于建立与寿命起源相关的关键生物分子的氮气的临界反应源。然而,许多HCN反应通过实验和理论保持不协调,并且行星大气中HCN生产的完整图像尚未完全理解。为了提高这种情况,我们开发了一种利用计算量子化学,实验数据和大气数值模拟的新技术。首先,我们使用量子化学模拟来探索N_(2) - ,CH_(4) - 和H_(2)群体大气中的主要物种列表中可能反应的整个领域。在此过程中,我们发现没有先前已知的速率系数的33个新反应。从这里,我们在可用时开发一个含有实验值的一致减少的大气混合化学网络(CRAHCN),否则是我们计算的速率系数。接下来,我们将Crahcn耦合到1D化学动力学模型(Chemkm),以将HCN丰度计算为泰坦上的大气深度。我们模拟的大气河状外形与Cassini观察结果非常吻合。 Crahcn含有104个反应;然而,几乎所有模拟的大气HCN型材都可以使用仅19个显性反应的缩小网络获得。从这里,我们在泰坦氛围中形成了HCN化学的完整图片,从主要的大气法的解离,沿着四个主要渠道直接生产HCN。首先发现了这些渠道之一并在Pearce等人的特征。和这项工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号