首页> 外文期刊>Atmospheric chemistry and physics >Observations on hygroscopic growth and phase transitions of mixed 1, 2, 6-hexanetriol?∕?(NH 4 ) 2 SO 4 particles: investigation of the liquid–liquid phase separation (LLPS) dynamic process and mechanism and secondary LLPS during the dehumidification
【24h】

Observations on hygroscopic growth and phase transitions of mixed 1, 2, 6-hexanetriol?∕?(NH 4 ) 2 SO 4 particles: investigation of the liquid–liquid phase separation (LLPS) dynamic process and mechanism and secondary LLPS during the dehumidification

机译:关于混合1,2,6-己二醇的吸湿生长和相转变的观察,2,4-己醇α/?(NH 4)2 SO 4颗粒:在除湿过程中调查液 - 液相分离(LLPS)动态过程和机理和副LLP

获取原文
           

摘要

Atmospheric aerosols consisting of organic and inorganic components may undergo liquid–liquid phase separation (LLPS) and liquid–solid phase transitions during ambient relative humidity (RH) fluctuation. However, the knowledge of dynamic phase evolution processes for mixed organic–inorganic particles is scarce. Here we present a universal and visualized observation of LLPS, efflorescence and deliquescence transitions as well as hygroscopic growth of laboratory-generated mixed?1, 2, 6-hexanetriol? / ?ammonium sulfate (AS) particles with different organic–inorganic mole ratios (OIR? = ? 1:4 , 1:2 , 1:1 , 2:1 and 4:1 ) with high time resolution (0.5?s) using an optical microscope operated with a video camera. The optical images suggest that an inner AS solution phase is surrounded by an outer organic-rich phase after LLPS for all mixed particles. The LLPS mechanism for particles with different OIRs is found to be distinct; meanwhile, multiple mechanisms may dominate successively in individual particles with a certain OIR, somewhat inconsistently with previously reported observations. More importantly, another phase separation in the inner AS solution phase, defined as secondary LLPS here, is observed for OIR? = ? 1:1 , 1:2 and 1:4 particles. The secondary LLPS may be attributed to the formation of more concentrated AS inclusions in the inner phase and becomes more obvious with decreasing RH and increasing AS mole fraction. Furthermore, the changes in size and number of AS inclusions during LLPS are quantitatively characterized, which further illustrate the equilibrium partitioning process of organic and inorganic components. These experimental results have significant implications for the revelation of complex phase transitions of internally mixed atmospheric particles and evaluation of liquid–liquid and liquid–solid equilibria in thermodynamic models.
机译:由有机和无机组分组成的大气气溶胶可以在环境相对湿度(RH)波动期间进行液 - 液相分离(LLP)和液体固相转变。然而,用于混合有机 - 无机颗粒的动态相进化方法的知识是稀缺的。在这里,我们提出了LLP,兴坏和潮流性转变的普遍性和可视化观察以及实验室产生的混合β1,2,6-己二醇的吸湿生长? /?硫酸铵(AS)颗粒具有不同的有机 - 无机摩尔比(OIR?= 1:4,1:2,1:1,2:1和4:1),使用高度分辨率(0.5Ω)用摄像机操作的光学显微镜。光学图像表明,作为溶液相的内部作为溶液相对于所有混合颗粒后的LLP后富含外部有机化相。发现具有不同OIR的颗粒的LLP机制是截然不同的;同时,多种机制可以连续地在具有一定的OIR中的单个颗粒中的,稍微与先前报告的观察结果不一致。更重要的是,在内部作为溶液阶段的另一个相分离在此处定义为辅助LLPS,用于OIR? =? 1:1,1:2和1:4颗粒。副LLP可归因于形成更浓缩的内部相夹杂物,并且随着RH减小并且随着摩尔级分而增加而变得更加明显。此外,在LLP期间的含量的大小和数量的变化是定量表征的,其进一步示出了有机和无机成分的平衡分配过程。这些实验结果对内部混合大气颗粒的复杂相转变的启示具有显着意义,以及热力学模型中液 - 液和液体固体平衡的评价。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号