首页> 外文期刊>Applied Microbiology >Fungal Seed Pathogens of Wild Chili Peppers Possess Multiple Mechanisms To Tolerate Capsaicinoids
【24h】

Fungal Seed Pathogens of Wild Chili Peppers Possess Multiple Mechanisms To Tolerate Capsaicinoids

机译:野生辣椒的真菌种子病原体具有多种机制来忍受衣壳蛋白

获取原文
           

摘要

The wild chili pepper Capsicum chacoense produces the spicy defense compounds known as capsaicinoids, including capsaicin and dihydrocapsaicin, which are antagonistic to the growth of fungal pathogens. Compared to other microbes, fungi isolated from infected seeds of C. chacoense possess much higher levels of tolerance of these spicy compounds, having their growth slowed but not entirely inhibited. Previous research has shown capsaicinoids inhibit microbes by disrupting ATP production by binding NADH dehydrogenase in the electron transport chain (ETC) and, thus, throttling oxidative phosphorylation (OXPHOS). Capsaicinoids may also disrupt cell membranes. Here, we investigate capsaicinoid tolerance in fungal seed pathogens isolated from C. chacoense . We selected 16 fungal isolates from four ascomycete genera ( Alternaria , Colletotrichum , Fusarium , and Phomopsis ). Using relative growth rate as a readout for tolerance, fungi were challenged with ETC inhibitors to infer whether fungi possess alternative respiratory enzymes and whether effects on the ETC fully explained inhibition by capsaicinoids. In all isolates, we found evidence for at least one alternative NADH dehydrogenase. In many isolates, we also found evidence for an alternative oxidase. These data suggest that wild-plant pathogens may be a rich source of alternative respiratory enzymes. We further demonstrate that these fungal isolates are capable of the breakdown of capsaicinoids. Finally, we determine that the OXPHOS theory may describe a weak primary mechanism by which dihydrocapsaicin, but not capsaicin, slows fungal growth. Our findings suggest that capsaicinoids likely disrupt membranes, in addition to energy poisoning, with implications for microbiology and human health.IMPORTANCE Plants make chemical compounds to protect themselves. For example, chili peppers produce the spicy compound capsaicin to inhibit pathogen damage and animal feeding. In humans, capsaicin binds to a membrane channel protein, creating the sensation of heat, while in microbes, capsaicin limits energy production by binding respiratory enzymes. However, some data suggest that capsaicin also disrupts membranes. Here, we studied fungal pathogens ( Alternaria , Colletotrichum , Fusarium , and Phomopsis ) isolated from a wild chili pepper, Capsicum chacoense . By measuring growth rates in the presence of antibiotics with known respiratory targets, we inferred that wild-plant pathogens might be rich in alternative respiratory enzymes. A zone of clearance around the colonies, as well as liquid chromatography-mass spectrometry data, further indicated that these fungi can break down capsaicin. Finally, the total inhibitory effect of capsaicin was not fully explained by its effect on respiratory enzymes. Our findings lend credence to studies proposing that capsaicin may disrupt cell membranes, with implications for microbiology, as well as human health.
机译:野生辣椒辣椒辣椒辣椒胶囊产生称为辣椒素,包括辣椒素和二氢胶囊的辣椒防御化合物,其对真菌病原体的生长是拮抗作用的。与其他微生物相比,从C的受感染的种子中分离的真菌。Chacoense的受感染的种子具有更高水平的这些辛辣化合物的耐受性,其生长缓慢但不完全抑制。以前的研究表明,通过在电子传送链(ETC)中的NADH脱氢酶中断ATP生产,从而节流氧化磷酸化(毒物)来抑制微生物抑制微生物。辣椒素也可能破坏细胞膜。在这里,我们研究了从C. chacoense分离的真菌种子病原体中的辣椒素耐受性。我们选择了来自四个Ascomycete属(alertaria,Colletotrichum,镰刀菌和Phomopsis)的16个真菌分离物。使用相对生长速率作为耐受性的耐受性,真菌被等等抑制剂挑战,以推断真菌是否具有替代呼吸酶,并对ETC的影响是否完全解释了辣椒素抑制剂。在所有分离物中,我们发现至少一种替代的NADH脱氢酶的证据。在许多分离物中,我们还发现了替代氧化酶的证据。这些数据表明,野生植物病原体可能是富含替代呼吸酶的富源。我们进一步证明,这些真菌分离物能够进行辣椒素的崩溃。最后,我们确定毒物理论可以描述二氢藻蛋白,但不是辣椒素,减缓真菌生长的弱主要机制。我们的研究结果表明,除能中毒之外,辣椒素可能会破坏膜,对微生物学和人类健康的影响。分析植物制造化合物保护自己。例如,辣椒产生辛辣的复合辣椒素以抑制病原体损伤和动物饲养。在人类中,辣椒素与膜通道蛋白结合,产生热量的感觉,而在微生物中,辣椒素通过结合呼吸酶限制能量产生。然而,一些数据表明辣椒蛋白也破坏了膜。在这里,我们研究了从野生辣椒,Capsicum Chacoense分离的真菌病原体(alterararia,collettrichum,镰刀菌,镰刀虫)。通过在具有已知呼吸靶点存在的抗生素存在下测量生长率,我们推断野生植物病原体可能富含替代呼吸酶。菌落周围的间隙,以及液相色谱 - 质谱数据,进一步表明这些真菌可以分解辣椒素。最后,辣椒素的总抑制作用未通过其对呼吸酶的影响充分解释。我们的调查结果借给研究提出的研究,提出辣椒素可能破坏细胞膜,对微生物学以及人类健康影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号