首页> 外文期刊>Journal of Geoscience and Environment Protection >Tile-Drain and Denitrification Bioreactor Water Chemistry for a Soybean (Glycine max(L.) Merr.)-Corn (Zea mays L.) Rotation in East-Central Missouri (USA)
【24h】

Tile-Drain and Denitrification Bioreactor Water Chemistry for a Soybean (Glycine max(L.) Merr.)-Corn (Zea mays L.) Rotation in East-Central Missouri (USA)

机译:瓦片排水和脱氮生物反应器水化学用于大豆(甘氨酸MAX(L.)Merr。) - 玉米(Zea mays L.)在密苏里州东部(美国)旋转

获取原文
           

摘要

Nitrogen transport from agriculture production fields raises the specter of environmental degradation of freshwater resources. Our objectives were to document and evaluate nitrate-N, ammonium-N, phosphorus and other nutrients emanating from a 40-ha controlled subsurface irrigation drainage technology coupled in series with a denitrification bioreactor. The intent of the denitrification bioreactor is to create an environment for anoxic microbial populations to support denitrification. We monitored the tile-drainage effluent and denitrification bioreactor water chemistry under a corn-soybean rotation to estimate the nutrient concentrations and the competence of the denitrification bioreactor to foster denitrification. Nitrate-N bearing tile drainage effluents ranged from less than 1.5 to 109 mg NO_(3) - )-N/L, with the nitrate concentration differences attributed primarily to the: 1) timing of nitrogen fertilization for corn, 2) soil mineralization and residue decomposition, and 3) intense rainfall events. The denitrification bioreactor was highly effective in reducing drainage water nitrate-N concentrations providing the rate of water flow through the denitrification bioreactor permitted sufficient time for equilibrium to be attained for the nitrate reduction reactions. The nitrate-N concentrations entering the denitrification bioreactor ranged from 0.4 to 103 mg NO_(3) -?)-N/L in 2018, whereas the outlet nitrate concentrations typically ranged from 0.3 to 5.2 mg NO_(3) - )-N/L in 2018. Nitrate tile-drainage effluent concentrations in 2019 were marginal, given soybeans obtain nitrogen from biological nitrogen fixation. Nutrient uptake by corn reduced the soil nitrate leaching pool and created nitrogen-bearing biomass, features important for formulating best management practices.
机译:农业生产领域的氮气运输提高了淡水资源的环境退化的幽灵。我们的目标是通过串联串联的40-HA控制的地下灌溉引流技术进行记录和评估硝酸盐-N,氨基-N,磷和其他营养素。反硝化生物反应器的目的是为缺氧微生物群创造一种以支持脱氮的环境。我们在玉米大豆旋转下监测了瓦片排水流出物和反硝化生物反应器水化学,以估计营养浓度和脱氮生物反应器的能力,以促进脱硝。硝酸盐瓷砖排水流出物从少于1.5至109mg NO_(3) - )-N / L,硝酸盐浓度差异主​​要是:1)玉米,2)土壤矿化的氮肥的时间和残留物分解,3)激烈的降雨事件。脱氮生物反应器在减少排水中的高效减少硝酸盐-N浓度,提供通过脱氮生物反应器的水流速率允许足够的时间达到硝酸盐还原反应的平衡。进入脱氮生物反应器的硝酸盐-N浓度范围为0.4至103mg NO_(3) - β-α) - N / L,而出口硝酸盐浓度通常为0.3至5.2mg NO_(3) - )-N / L于2018年。硝酸盐瓷砖排水流出物浓度在2019年是边缘的,给定大豆从生物氮固定中获得氮。玉米营养吸收降低了土壤硝酸盐浸出池并产生氮含氮生物质,具有适合制定最佳管理实践的重要性。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号