首页> 外文期刊>DOCUMENTA MATHEMATICA >On the Fibres of Mishchenko-Fomenko Systems
【24h】

On the Fibres of Mishchenko-Fomenko Systems

机译:在Mishchenko-Fomenko系统的纤维上

获取原文
获取外文期刊封面目录资料

摘要

This work is concerned with Mishchenko and Fomenko's celebrated theory of completely integrable systems on a complex semisimple Lie algebra (mathfrak{g}). Their theory associates a maximal Poisson-commutative subalgebra of (mathbb{C}[mathfrak{g}]) to each regular element (ainmathfrak{g}), and one can assemble free generators of this subalgebra into a moment map (F_a:mathfrak{g}ightarrowmathbb{C}^b). This leads one to pose basic structural questions about (F_a) and its fibres, e.g. questions concerning the singular points and irreducible components of such fibres. par We examine the structure of fibres in Mishchenko-Fomenko systems, building on the foundation laid by Bolsinov, Charbonnel-Moreau, Moreau, and others. This includes proving that the critical values of (F_a) have codimension (1) or (2) in (mathbb{C}^b), and that each codimension is achievable in examples. Our results on singularities make use of a subalgebra (mathfrak{b}^asubseteqmathfrak{g} ), defined to be the intersection of all Borel subalgebras of (mathfrak{g}) containing (a). In the case of a non-nilpotent (ainmathfrak{g}_{mathrm{reg}}) and an element (xinmathfrak{b}^a), we prove the following: (x+[mathfrak{b}^a,mathfrak{b}^a]) lies in the singular locus of (F_a^{-1}(F_a(x))), and the fibres through points in (mathfrak{b}^a) form a (ext{rank}(mathfrak{g}))-dimensional family of singular fibres. We next consider the irreducible components of our fibres, giving a systematic way to construct many components via Mishchenko-Fomenko systems on Levi subalgebras (mathfrak{l}subseteqmathfrak{g}). In addition, we obtain concrete results on irreducible components that do not arise from the aforementioned construction. Our final main result is a recursive formula for the number of irreducible components in (F_a^{-1}(0)), and it generalizes a result of Charbonnel-Moreau. Illustrative examples are included at the end of this paper.
机译:这项工作涉及Mishchenko和Fomenko在一个复杂的半动物谎言代数上完全可排现的系统的庆祝理论,( Mathfrak {G})。他们的理论将一个最大泊松换向子晶晶晶片与每个常规元素(a mathfrak {g} )相关联,可以组装自由生成器这个subalgebra进入时刻映射(f_a: mathfrak {g} lightarrow mathbb {c} ^ b )。这导致了一个关于(f_a )及其光纤的基本结构问题,例如,关于这种纤维的奇异点和不可缩伤组分的问题。 Par我们检查了Mishchenko-Fomenko系统中的纤维结构,在Bolsinov,Charbonnel-Moreau,Moreau等地基的基础上建造的基础。这包括证明(f_a )的临界值具有codimension (1 )或( mathbb {c} ^ b )中的临界值,并且在示例中可以实现每个CODIMENUSE。我们对奇点的结果利用子晶格( mathfrak {b} ^ a subseteq mathfrak {g}),定义为包含包含(一种)。在非尼尔这样的情况下(a mathfrak {g} _ { mathrm {reg}} )和一个元素(x in mathfrak {b} ^ a ),我们证明了以下内容:(x + [ mathfrak {b} ^ a, mathfrak {b} ^ a] )位于(f_a ^ {-1}(f_a(x)))和纤维的奇异轨迹中点处于( mathfrak {b} ^ a )形成( text {rank}( mathfrak {g})) - 尺寸纤维的尺寸系列。我们接下来考虑我们的纤维的不可约成分,提供了通过Mishchenko-Fomenko系统在Levi Subalgebras ( Mathfrak {L} subseteq Mathfrak {G}})上构建许多组件的系统。此外,我们在上述结构中获得了不可缩短的成分的具体结果。我们的最终结果是(f_a ^ { - 1}(0))中的不可缩小组件数量的递归公式,并且它概括了Charbonnel-Moreau的结果。本文结束时包括说明性实例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号