首页> 外文期刊>Frontiers in Medicine >Potential Prognostic Immune Biomarkers of Overall Survival in Ovarian Cancer Through Comprehensive Bioinformatics Analysis: A Novel Artificial Intelligence Survival Prediction System
【24h】

Potential Prognostic Immune Biomarkers of Overall Survival in Ovarian Cancer Through Comprehensive Bioinformatics Analysis: A Novel Artificial Intelligence Survival Prediction System

机译:通过综合生物信息学分析潜在卵巢癌整体存活的潜在预后免疫生物标志物:一种新型人工智能生存预测系统

获取原文
           

摘要

Background: The tumour immune microenvironment plays an important role in the biological mechanisms of tumorigenesis and progression. Artificial intelligence medicine studies based on big data and advanced algorithms are helpful for improving the accuracy of prediction models of tumour prognosis. The current research aims to explore potential prognostic immune biomarkers and develop a predictive model for the overall survival of ovarian cancer (OC) based on artificial intelligence algorithms. Methods: Differential expression analyses were performed between normal tissues and tumour tissues. Potential prognostic biomarkers were identified using univariate Cox regression. An immune regulatory network was constructed of prognostic immune genes and their highly related transcription factors. Multivariate Cox regression was used to identify potential independent prognostic immune factors and develop a prognostic model for ovarian cancer patients. Three artificial intelligence algorithms, random survival forest, multitask logistic regression, and Cox survival regression, were used to develop a novel artificial intelligence survival prediction system. Results: The current study identified 1,307 differentially expressed genes and 337 differentially expressed immune genes between tumour samples and normal samples. Further univariate Cox regression identified 84 prognostic immune gene biomarkers for ovarian cancer patients in the model dataset ( {"type":"entrez-geo","attrs":{"text":"GSE32062","term_id":"32062"}} GSE32062 dataset and {"type":"entrez-geo","attrs":{"text":"GSE53963","term_id":"53963"}} GSE53963 dataset). An immune regulatory network was constructed involving 63 immune genes and 5 transcription factors. Fourteen immune genes (PSMB9, FOXJ1, IFT57, MAL, ANXA4, CTSH, SCRN1, MIF, LTBR, CTSD, KIFAP3, PSMB8, HSPA5, and LTN1) were recognised as independent risk factors by multivariate Cox analyses. Kaplan-Meier survival curves showed that these 14 prognostic immune genes were closely related to the prognosis of ovarian cancer patients. A prognostic nomogram was developed by using these 14 prognostic immune genes. The concordance indexes were 0.760, 0.733, and 0.765 for 1-, 3-, and 5-year overall survival, respectively. This prognostic model could differentiate high-risk patients with poor overall survival from low-risk patients. According to three artificial intelligence algorithms, the current study developed an artificial intelligence survival predictive system that could provide three individual mortality risk curves for ovarian cancer. Conclusion: In conclusion, the current study identified 1,307 differentially expressed genes and 337 differentially expressed immune genes in ovarian cancer patients. Multivariate Cox analyses identified fourteen prognostic immune biomarkers for ovarian cancer. The current study constructed an immune regulatory network involving 63 immune genes and 5 transcription factors, revealing potential regulatory associations among immune genes and transcription factors. The current study developed a prognostic model to predict the prognosis of ovarian cancer patients. The current study further developed two artificial intelligence predictive tools for ovarian cancer, which are available at https://zhangzhiqiao8.shinyapps.io/Smart_Cancer_Survival_Predictive_System_17_OC_F1001/ and https://zhangzhiqiao8.shinyapps.io/Gene_Survival_Subgroup_Analysis_17_OC_F1001/ . An artificial intelligence survival predictive system could help improve individualised treatment decision-making.
机译:背景:肿瘤免疫微环境在肿瘤发生和进展的生物学机制中起着重要作用。基于大数据和高级算法的人工智能医学研究有助于提高肿瘤预后预测模型的准确性。目前的研究旨在探讨潜在的预后免疫生物标志物,并基于人工智能算法的卵巢癌(OC)整体存活的预测模型。方法:在正常组织和肿瘤组织之间进行差异表达分析。使用单变量COX回归鉴定潜在的预后生物标志物。免疫调节网络由预后免疫基因构建及其高度相关的转录因子。多元COX回归用于鉴定潜在的独立预后免疫因子,并为卵巢癌患者制定预后模型。三个人工智能算法,随机生存森林,多任务回归和Cox生存回归,用于开发新的人工智能生存预测系统。结果:目前的研究鉴定了1,307个差异表达的基因,337个肿瘤样品与正常样品之间的差异表达的免疫基因。进一步的单变量Cox回归鉴定了卵巢癌患者在模型数据集({“类型”:“entrez-geo”,“attrs”:{“text”:“gse32062”,“term_id”:“term_id”中:“32062” GSE32062数据集和{“类型”:“entrez-geo”,“attrs”:{“text”:“gse53963”,“term_id”:“53963”}} GSE53963数据集)。构建免疫调节网络,涉及63个免疫基因和5种转录因子。通过多变量COX分析将十四个免疫基因(PSMB9,FoxJ1,IFT57,MAL,ANXA4,CTSH,SCRN1,MIF,LTBR,CTSD,KIFAP3,PSMB8,HSPA5和LTN1)被认为是独立的风险因素。 Kaplan-Meier存活曲线表明,这14个预后的免疫基因与卵巢癌患者的预后密切相关。通过使用这项14个预后的免疫基因开发了预后的NOM图。分别为1-,3-和5年的整体存活率为0.760,0.733和0.765的一致性指标。该预后模型可以区分高风险患者,从低风险患者中生存差。根据三个人工智能算法,目前的研究开发了一种人工智能生存预测系统,可以为卵巢癌提供三种个体死亡率风险曲线。结论:总之,目前的研究鉴定了卵巢癌患者的1,307个差异表达基因和337个差异表达的免疫基因。多元COX分析确定了卵巢癌的14个预后免疫生物标志物。目前的研究构建了一种免疫调节网络,涉及63个免疫基因和5种转录因子,揭示免疫基因和转录因子之间的潜在调节关联。目前的研究开发了预测卵巢癌患者的预后的预后模型。目前的研究进一步为卵巢癌开发了两个人工智能预测工具,可在https://zhangzhiqiao8.shinyapps.io/smart_cancer_survival_predictive_system_17_oc_f1001/和https://zhangzhiqiao8.shinyapps.io/gene_survival_subgroup_analysis_17_oc_f1001/。人工智能生存预测系统有助于改善个性化治疗决策。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号