...
首页> 外文期刊>Case Studies in Thermal Engineering >Thermal analysis for ferromagnetic fluid with hybrid nano-metallic structures in the presence of Forchheirmer porous medium subjected to a magnetic dipole
【24h】

Thermal analysis for ferromagnetic fluid with hybrid nano-metallic structures in the presence of Forchheirmer porous medium subjected to a magnetic dipole

机译:在经受磁性偶极子的前料多孔介质存在下具有杂交纳米金属结构的铁磁流体的热分析

获取原文
   

获取外文期刊封面封底 >>

       

摘要

This study is about thermal enhancement in hybrid nano-ferrofluid. The conservation equations with thermo-correlations are solved numerically and computed solutions are used for parametric study related to flow of fluid and transfer of heat energy. The convergent solutions are derived via the finite element method (FEM). A mesh-free study is performed. Flow experiences a sufficient amount of resistive force by the porous medium. It is noted that Darcy porous is less resistive than Forchheirmer porous medium. It is also noted that convective heat transfer is compromised when the Forchheirmer parameter is increased. Dissipation effects are responsible for an increase in temperature and hence, an increase in thermal boundary layer thickness is noted. It is also observed that heat dissipation in a hybrid nanofluid is stronger than that in a nanofluid. The numerical values read the wall shear stress exerted by hybrid nanofluid is greater than wall shear stress by nano-ferrofluid. The wall shear stress increases as a function of the ferro-hydrodynamic parameter. However, the wall heat transfer rate (Nusselt number) decreases as the ferro-hydrodynamic parameter is increased. Similarly, wall shear stress increases versus Curie temperature number whereas Nusselt number decreases when the porosity parameter is increased. The porous medium is responsible for more wall shear stress on the surface. The transfer of heat in the presence of a porous medium in a fluid is greater than the rate of heat transfer in fluid in the absence of a porous medium. Viscous dissipation is responsible for the increase of the rate of heat transfer.
机译:该研究是关于杂交纳米铁物质流体的热增强。具有热相关性的节约方程在数值上解决,并且计算的解决方案用于与流体流和热能传递相关的参数研究。收敛溶液通过有限元方法(FEM)导出。进行无网线研究。流动通过多孔介质经历足够量的电阻力。有人指出,达西多孔的电阻比对于前毛剂多孔介质较小。还应注意,当傅舍参数增加时,对流热传递受到损害。耗散效应负责温度的增加,因此,注意到热边界层厚度的增加。还观察到杂交纳米流体中的散热比纳米流体中的散热较强。数值读取通过杂交纳米流体施加的壁剪切应力大于纳米铁物质流体的壁剪应力。作为铁流体动力学参数的函数,壁剪切应力增加。然而,随着铁 - 流体动力学参数增加,壁传热速率(露珠数)降低。类似地,壁剪切应力增加而居里温度数,而当孔隙率参数增加时,尤基因数减小。多孔介质负责表面上的更多壁剪切应力。在流体中存在多孔介质存在的热量在不存在多孔介质的情况下大于流体中的热传递速率。粘性耗散负责增加热传递速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号