...
首页> 外文期刊>Data Science and Engineering >Graph Learning for Combinatorial Optimization: A Survey of State-of-the-Art
【24h】

Graph Learning for Combinatorial Optimization: A Survey of State-of-the-Art

机译:组合优化的图表学习:现有技术的调查

获取原文

摘要

Graphs have been widely used to represent complex data in many applications, such as e-commerce, social networks, and bioinformatics. Efficient and effective analysis of graph data is important for graph-based applications. However, most graph analysis tasks are combinatorial optimization (CO) problems, which are NP-hard. Recent studies have focused a lot on the potential of using machine learning (ML) to solve graph-based CO problems. Most recent methods follow the two-stage framework. The first stage is graph representation learning, which embeds the graphs into low-dimension vectors. The second stage uses machine learning to solve the CO problems using the embeddings of the graphs learned in the first stage. The works for the first stage can be classified into two categories, graph embedding methods and end-to-end learning methods. For graph embedding methods, the learning of the the embeddings of the graphs has its own objective, which may not rely on the CO problems to be solved. The CO problems are solved by independent downstream tasks. For end-to-end learning methods, the learning of the embeddings of the graphs does not have its own objective and is an intermediate step of the learning procedure of solving the CO problems. The works for the second stage can also be classified into two categories, non-autoregressive methods and autoregressive methods. Non-autoregressive methods predict a solution for a CO problem in one shot. A non-autoregressive method predicts a matrix that denotes the probability of each node/edge being a part of a solution of the CO problem. The solution can be computed from the matrix using search heuristics such as beam search. Autoregressive methods iteratively extend a partial solution step by step. At each step, an autoregressive method predicts a node/edge conditioned to current partial solution, which is used to its extension. In this survey, we provide a thorough overview of recent studies of the graph learning-based CO methods. The survey ends with several remarks on future research directions.
机译:图表已被广泛用于表示许多应用中的复杂数据,例如电子商务,社交网络和生物信息学。对图数据的高效且有效分析对于基于图形的应用很重要。但是,大多数图表分析任务是组合优化(CO)问题,即NP-Hard。最近的研究对使用机器学习(ML)来解决基于图形的CO问题的可能性集中了很多。最近的方法遵循两级框架。第一阶段是图形表示学习,它将图形嵌入到低维向量中。第二阶段使用机器学习使用第一阶段中学到的图表的嵌入来解决CO问题。第一阶段的作品可以分为两个类别,图形嵌入方法和端到端学习方法。对于图形嵌入方法,图表的嵌入式的学习具有自己的目标,这可能不依赖于要解决的CO问题。 CO问题由独立的下游任务解决。对于端到端的学习方法,图表的嵌入的学习没有自己的目标,并且是解决CO问题的学习过程的中间步骤。第二阶段的作品也可以分为两类,非自动评级方法和自回归方式。非自动评级方法预测一次拍摄CO问题的解决方案。非自动评级方法预测表示每个节点/边缘的概率是CO问题的一部分的矩阵。可以使用诸如波束搜索的搜索启发式从矩阵计算解决方案。自回归方法逐步延伸部分解决方案。在每个步骤中,自回归方法预测到当前部分解决方案的节点/边缘,其用于其扩展。在本调查中,我们提供了最近的基于图形学习的CO方法的研究概述。调查结束了几个关于未来的研究方向的评论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号