...
首页> 外文期刊>Shock and vibration >Sliding Impact Mechanism of Square Roadway Based on Complex Function Theory
【24h】

Sliding Impact Mechanism of Square Roadway Based on Complex Function Theory

机译:基于复杂功能理论的方巷道滑动冲击机制

获取原文
           

摘要

To clarify the process of stress change and plastic zone evolution of square roadways under high-stress conditions, the rotational square expansion plastic zone evolution model of square roadway was established by theoretical analysis, numerical simulation, and engineering verification. The shear slip impact stress criterion of square roadway based on complex variable function theory was studied, and the law of surrounding rock stress distribution, plastic zone expansion, elastic energy density, local energy release rate (LERR), and total energy release of square roadway were analyzed. The results show that the compressive stress is concentrated in the four corners of the roadway after the roadway excavated and transfers with the change of plastic zone. Main shear failures start from the four corners and develop in a rotating square shape, forming square failure zones I and II. The square failure zone I is connected with the roadway contour and rotated 45°. The square failure zone II is connected with the square failure zone I and rotated 45°. When the original rock stress is low, the surrounding rock tends to be stable after the square shear slip line field formed. When the original rock stress is high, the shear failure of the surrounding rock continues to occur after the square failure zone II formed, showing a spiral slip line. Corners of the square roadway and square failure zones I and II are the main energy accumulation and release areas. The maximum elastic energy density and LERR increase exponentially with the ratio of vertical stress to uniaxial compressive strength ( Ic ). When square corners of the roof are changed to round corners, the plastic zone of the roof expands to form an arch structure. The maximum elastic energy density decreases by 22%, which reduces the energy level and possibility of rock burst. This study enriches the failure mechanism of roadway sliding impact. It can provide a basic theoretical reference for the design of the new roadway section and support form based on the prevention of rock burst.
机译:为了澄清高应力条件下方巷道应力变化和塑料区演化的过程,通过理论分析,数值模拟和工程验证建立了方巷旋转方膨胀塑料区演化模型。研究了基于复杂可变函数理论的方巷道的剪切滑动冲击应力标准,以及周围岩石应力分布,塑料区膨胀,弹性能量密度,局部能量释放率(LERR)的定律,以及方程道路的总能源释放分析了。结果表明,在挖掘道路挖掘和转移塑料区之后,压缩应力集中在道路的四个角。主剪切故障从四个角落开始,并在旋转方形中开发,形成方形故障区I和II。方形故障区I与道路轮廓连接并旋转45°。方形故障区II与方形故障区I连接并旋转45°。当原始岩石应力低时,在形成的方形剪切滑动线场形成后,周围的岩石趋于稳定。当原始岩石应力很高时,在方形故障区II形成后,周围岩石的剪切失效继续发生,显示螺旋滑动线。方巷道和方形故障区I和II的角落是主要能量积累和释放区域。最大弹性能量密度和LERR以垂直应力与单轴抗压强度(IC)的比率呈指数级增长。当屋顶的方形变形变为圆角时,屋顶的塑料区膨胀以形成拱形结构。最大弹性能量密度降低22%,降低了岩爆的能量水平和可能性。本研究丰富了巷道滑动冲击的故障机制。它可以为基于防止岩石爆裂的新道路部分和支持形式提供基本的理论参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号