...
首页> 外文期刊>Resonance >Genome Editing: Revolution in Life Sciences
【24h】

Genome Editing: Revolution in Life Sciences

机译:基因组编辑:生命科学的革命

获取原文
           

摘要

Programmable nucleases—ZFNs, TALENs and CRISPR-Cas9—have equipped scientists with an unprecedented ability to modify cells and organisms almost at will, with great implications across life sciences: biology, agriculture, ecology and medicine. Nucleases-based genome editing (aka gene editing) depends on cellular responses to a targeted double-strand break(DSB). The ?rst truly targetable reagents were zinc ?nger nu-cleases (ZFNs) showing that arbitrary DNA sequences within a mammalian genome, could be addressed by protein engi-neering, ushering in the era of genome editing. ZFNs that are fusions of zinc ?nger proteins (ZFPs) and FokI cleavage domain, resulted from the basic research on Type IIs FokI re-striction enzyme, which showed a bipartite structure with a separable DNA-binding domain and a non-speci?c cleavage domain. Studies on 3-?nger ZFNs established that the preferred substrates were paired binding sites, which doubled the size of the target recognition sequence from 9 to 18 bp that is large enough to specify a unique genomic locus in plant and mammalian cells, including human cells. Subsequently, a ZFN-induced DSB was shown to stimulate homologous re-combination in frog eggs. Transcription activator-like e?ec-tor nucleases (TALENs) that are based on bacterial TALEs fused to FokI cleavage domain expanded the capability. ZFNs and TALENs have been successfully used to modify a multi-tude of recalcitrant organisms and cell types that were unap-proachable previously attesting to the success of protein engi-neering, long before the arrival of CRISPR. The recent tech-nique to deliver a targeted DSB to cellular genomes are RNA-guided nucleases as exempli?ed by the Type II prokaryotic CRISPR-Cas9 system. Unlike ZFNs and TALENs that use protein motifs for DNA sequence recognition, CRISPR-Cas9 depends on RNA-DNA recognition. The advantages of the CRISPR-Cas9 system, which include ease of RNA design for new targets and dependence on a single constant Cas9 protein, have led to its wide adoption by research labs around the world. The 2020 Nobel Prize for Chemistry was awarded to Jennifer Doudna and Emmanualle Charpentier for harnessing CRISPR-Cas9 system to provide a simpli?ed technique for genome editing. The programmable nucleases have also been shown to cut at o?-target sites with mutagenic consequences, which is a serious concern for human therapeutic applications. Therefore, applications of genome editing technologies to human therapeutics will ultimately depend on risk versus bene?t analysis and informed consent.
机译:可编程核酸酶-ZFN,Talens和Crisp-Cas9 - 已经配备了科学家,具有前所未有的能力,几乎旨在改变细胞和生物的能力,对生命科学的巨大影响:生物学,农业,生态和医学。基于核酸酶的基因组编辑(AKA基因编辑)取决于对靶标双链断裂(DSB)的细胞反应。 αRST真正的靶向试剂是锌αnger nu-claess(zfns),显示哺乳动物基因组内的任意DNA序列,可以通过蛋白质合流,迎来基因组编辑的时代。 ZFN是锌的融合蛋白(ZFPS)和Foki切割结构域,由IIS FOKI型重新定义酶的基本研究产生,其显示与可分离的DNA结合结构域和非特定的二分结构切割域。关于3- ZFN的研究确定优选的基材是成对的结合位点,其从9-18bp的靶识别序列的尺寸加倍,其足够大,以在植物和哺乳动物细胞中指定独特的基因组轨迹,包括人体细胞。随后,显示ZFN诱导的DSB刺激青蛙卵中的同源重新组合。转录活化剂样E?基于融合对Foki切割结构域的细菌故事的EC-Tor核酸酶(Talens)扩大了该能力。 ZFN和Talens已成功地用于修改顽固的顽固生物和细胞类型,以前证明了蛋白质Engi-exering的成功,在CrispRp的到来之前。最近的Tech-Nique将靶向DSB递送到蜂窝基因组是RNA引导的核酸酶,如II型原核CRISP-CAS9系统所示。与使用蛋白质主题进行DNA序列识别的ZFN和Talens不同,CRISPR-CAS9取决于RNA-DNA识别。 CRISPR-CAS9系统的优点,包括用于新目标的RNA设计和对单一常数CAS9蛋白的依赖性,导致了世界各地研究实验室的广泛采用。 2020年诺贝尔化学奖颁发给Jennifer Doudna和Emmanualle Charpentier,用于利用CRISPR-CAS9系统,为基因组编辑提供Simpli?ED技术。可编程核酸酶也已显示在o?-target遗址中切割,具有致残后果,这是人类治疗应用的严重关注。因此,基因组编辑技术对人类治疗方法的应用最终将依赖于平衡与Bene?T分析和知情同意。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号