首页> 外文期刊>Npj Computational Materials >Accelerating phase-field-based microstructure evolution predictions via surrogate models trained by machine learning methods
【24h】

Accelerating phase-field-based microstructure evolution predictions via surrogate models trained by machine learning methods

机译:通过机器学习方法训练的代理模型加速基于阶段的微观结构演化预测

获取原文
           

摘要

The phase-field method is a powerful and versatile computational approach for modeling the evolution of microstructures and associated properties for a wide variety of physical, chemical, and biological systems. However, existing high-fidelity phase-field models are inherently computationally expensive, requiring high-performance computing resources and sophisticated numerical integration schemes to achieve a useful degree of accuracy. In this paper, we present a computationally inexpensive, accurate, data-driven surrogate model that directly learns the microstructural evolution of targeted systems by combining phase-field and history-dependent machine-learning techniques. We integrate a statistically representative, low-dimensional description of the microstructure, obtained directly from phase-field simulations, with either a time-series multivariate adaptive regression splines autoregressive algorithm or a long short-term memory neural network. The neural-network-trained surrogate model shows the best performance and accurately predicts the nonlinear microstructure evolution of a two-phase mixture during spinodal decomposition in seconds, without the need for "on-the-fly" solutions of the phase-field equations of motion. We also show that the predictions from our machine-learned surrogate model can be fed directly as an input into a classical high-fidelity phase-field model in order to accelerate the high-fidelity phase-field simulations by leaping in time. Such machine-learned phase-field framework opens a promising path forward to use accelerated phase-field simulations for discovering, understanding, and predicting processing-microstructure-performance relationships.
机译:相现场方法是一种强大而通用的计算方法,用于对各种物理,化学品和生物系统进行微观结构和相关性能的演变。然而,现有的高保真阶段场模型本质上是计算昂贵的,需要高性能计算资源和复杂的数控集成方案,以实现有用的准确度。在本文中,我们通过组合阶段和历史依赖的机器学习技术,介绍了一种计算廉价,准确的数据驱动的代理模型,该模型直接学习了目标系统的微观结构演进。我们将直接从相场仿真直接获得的微结构的统计代表性的低维描述集成,具有时间序列多变量自适应回归均衡算法或长期内存神经网络。神经网络训练的代理模型显示了最佳性能,并且准确地预测了在几秒钟内旋转透镜分解期间两相混合物的非线性微观结构演变,而无需“在飞行”的相位场方程的溶液运动。我们还表明,我们的机器学习代理模型的预测可以直接作为输入到经典高保真阶段模型中的输入,以便通过跳跃加速高保真阶段场模拟。这种机器学习的阶段场框架打开了一个有希望的道路,以便使用加速的相场模拟来发现,理解和预测处理微结构性能关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号