首页> 外文期刊>Cell stress & chaperones >HSPB5 (αB-crystallin) confers protection against paraquat-induced oxidative stress at the organismal level in a tissue-dependent manner
【24h】

HSPB5 (αB-crystallin) confers protection against paraquat-induced oxidative stress at the organismal level in a tissue-dependent manner

机译:Hspb5(αb-crystallin)以组织依赖的方式赋予在有机体水平下对百草枯诱导的氧化应激的保护

获取原文
       

摘要

Oxidative stress is one of the major and continuous stresses, an organism encounters during its lifetime. Tissues such as the brain, liver and muscles are more prone to damage by oxidative stress due to their metabolic activity, differences in physiological and adaptive processes. One of the defence mechanisms against continuous oxidative stress is a set of small heat shock proteins. αB-Crystallin/HSPB5, a small heat shock protein, gets upregulated under stress and acts as a molecular chaperone. In addition to acting as a molecular chaperone, HSPB5 is shown to have a role in other cytoprotective functions such as inhibition of apoptosis, prevention of oxidative stress and stabilisation of cytoskeletal system. Such protection in vivo, at the organism level, particularly in a tissue-dependent manner, has not been investigated. We have expressed HSPB5 in fat body (liver), neurons and specifically in dopaminergic and motor neurons in Drosophila and investigated its protective effect against paraquat-induced oxidative stress. We observed that expression of HSPB5 in neurons and fat body confers protection against paraquat-induced oxidative stress. Expression in dopaminergic neurons showed a higher protective effect. Our results clearly establish the protective ability of HSPB5 in vivo; the extent of protection, however, varies depending on the tissue in which it is expressed. Interestingly, neuronal expression of HSPB5 resulted in an improvement in negative geotropic behaviour, whereas specific expression in muscle tissue did not show such a beneficial effect. Keywords: αB-Crystallin, Small heat shock proteins, Oxidative stress, Tissue-dependence, HSPB5, Drosophila IntroductionOxidative stress is a major stress encountered by living organisms. It is generated by both intrinsic (metabolic processes) and extrinsic factors (pollutants, drugs, chemicals, radiation, etc.) (Cui et al. 2012; Liguori et al. 2018). Thus, chronic oxidative stress leads to a gradual accumulation of toxic substances, the failure of cell functions, changes in cell signalling, mitochondrial dysfunction, ER stress and inflammation, which accelerate the biological ageing process leading to diseases such as neurodegeneration and cancer (Cui et al. 2012; Pham-Huy et al. 2008). Cells have evolutionarily developed efficient defence mechanisms to protect against oxidative stress. One of the important defence systems that cells have evolved is the upregulation of heat shock proteins (HSPs). Among the HSPs, small heat shock proteins (sHsps) constitute the first layer of defence. They are ATP-independent chaperones; they bind to unfolded proteins and prevent them from further denaturation and aggregation (Kappe et al. 2003). The small heat shock proteins exist as oligomers with subunit molecular masses ranging from 12 to 43?kDa. All the small heat shock proteins are shown to contain a stretch of 80–100 conserved amino acids towards the C-terminal region called the “α-crystallin domain” (ACD) flanked by N-terminal domain (NTD) and C-terminal extension (CTE) (Franck et al. 2004; Kriehuber et al. 2010). The human genome is shown to contain genes for 10 small heat shock proteins (Kappe et al. 2003). αB-Crystallin/HSPB5, one of the 10 sHsps, was first identified in the eye lens (de Jong et al. 1993; Groenen et al. 1994; Ingolia and Craig 1982). It was also identified in non-lenticular tissues such as the brain, muscles, heart, liver, adipose and kidney (Bhat and Nagineni 1989; Iwaki et al. 1990). It was shown to prevent the aggregation of other proteins like a molecular chaperone (Horwitz 1992). Studies from our laboratory have shown that structural perturbation of HSPB5/αB-crystallin significantly increases the exposed surface hydrophobicity and its chaperone-like activity (Raman and Rao 1994). In addition to functioning as a molecular chaperone in preventing protein aggregation, it also performs other functions such as inhibition of apoptosis (Adhikari et al. 2011; Kamradt et al. 2001) metal-binding, especially to Cu~(+2) (Ahmad et al. 2008), modulation of cytoskeletal dynamics (Perng et al. 1999; Singh et al. 2007), modulation of cell cycle and prevention of oxidative stress (McGreal et al. 2012).The extent of susceptibility to oxidative stress varies with tissue, largely due to varying intrinsic ROS levels and adaptive processes (Leeuwenburgh et al. 1997; Surai et al. 1996). The brain is vulnerable to oxidative insults due to multiple factors: high oxygen consumption (20%), abundance of redox-active metals such as Cu~(+2), Fe~(+2) and Zn~(+2) (Halliwell 1992) and high concentration of oxidisable polyunsaturated fatty acids (Cobley et al. 2018; Wang and Michaelis 2010). Neurons are more vulnerable to oxidative damage due to greater metabolic demands associated with structural complexity (long dendritic projections and axonal branching) and functions such as synaptic transmission, propagation of action potential and molecular trafficking, and modest antio
机译:氧化应激是主要和持续的应力之一,生物在其寿命期间遭遇。由于其代谢活性,由于其代谢活性,生理和适应性过程的差异,诸如脑,肝脏和肌肉的组织更容易受到氧化应激的损害。防止连续氧化应激的防御机制之一是一组小型热休克蛋白。 αb-结晶/ hspb5,小的热休克蛋白,在应力下上调并用作分子伴侣。除了作为分子伴侣的作用之外,Hspb5显示在其他细胞保护功能中具有作用,例如抑制细胞凋亡,预防氧化应激和细胞骨骼系统的稳定化。在体内,在有机体水平,特别是以组织依赖方式的体内保护的这种保护尚未得到研究。我们已经表达了脂肪体(肝脏),神经元的Hspb5,并且在果蝇中的多巴胺能和运动神经元中表达,并研究了其对拟火氧化胁迫的保护作用。我们观察到HSPB5在神经元和脂肪体中的表达赋予了拟伞状诱导的氧化应激的保护。多巴胺能神经元的表达显示出更高的保护作用。我们的结果明确建立了Hspb5在体内的保护能力;然而,保护程度根据表达的组织而变化。有趣的是,HSPB5的神经元表达导致负渗透性行为的改善,而肌肉组织中的特异性表达并未显示出这样的有益效果。关键词:αB-结晶,小型热休克蛋白,氧化应激,组织依赖性,Hspb5,果蝇引入氧化应激是生物体遇到的主要压力。它由内在(代谢过程)和外在因子(污染物,药物,化学品,辐射等)产生(Cui等,2012; Liguori等,2018)。因此,慢性氧化应激导致有毒物质的逐渐积累,细胞功能的失败,细胞信号传导的变化,线粒体功能障碍,ER应激和炎症,从而加速了生物老化过程,导致神经变性和癌症等疾病(Cui Et al。2012; Pham-Huy等人2008)。细胞已经进化地发展了高效的防御机制以防止氧化应激。细胞进化的重要防御系统之一是热休克蛋白(HSP)的上调。在HSP中,小型热休克蛋白(SHSP)构成第一层防御。它们是ATP独立的伴侣箱;它们与展开的蛋白质结合并防止它们进一步变性和聚集(Kappe等,2003)。小型热休克蛋白作为低聚物作为亚基分子量的低聚物,范围为12至43Ωkda。所有小型热休克蛋白显示出含有朝向称为“α-晶型结构域”(ACD)的C末端区域的80-100保守氨基酸的拉伸,其侧翼为N-末端域(NTD)和C末端延伸(CTE)(Franck等,2004; Kriehuber等,2010)。人类基因组被显示为含有10个小热休克蛋白的基因(Kappe等人。2003)。首先在眼镜(De Jong等,1993; Groenen等,1994; Ingolia和Craig 1982)首先鉴定了10个SHSP中的一个。还在非晶体组织中鉴定为脑,肌肉,心脏,肝脏,脂肪和肾脏(Bhat和Nagineni 1989; Iwaki等,1990)。显示出防止其他蛋白质的聚集在分子伴侣(Horwitz 1992)中。我们实验室的研究表明,HSPB5 /αB结晶素的结构扰动显着增加了暴露的表面疏水性及其伴侣样活性(拉曼和Rao 1994)。除了用作防止蛋白质聚集的分子伴侣的功能外,还进行其他功能,例如抑制细胞凋亡(Adhikari等,2011; Kamradt等人2001)金属结合,尤其是Cu〜(+2)(Ahmad et al。2008),调制细胞骨骼动态(Perg等人1999; Singh等人2007),调制细胞周期和氧化应激的预防(McGreal等,2012)。对氧化压力的易感程度不同组织,主要是由于不同的内在ROS水平和自适应过程(Leeuwenburgh等,1997; Surai等,1996)。由于多种因素,大脑容易受到氧化损伤:高氧消耗(20%),氧化还原活性金属如Cu〜(+ 2),Fe〜(+2)和Zn〜(+2)(Halliwell) 1992年)和高浓度的氧化多不饱和脂肪酸(Cobley等,2018; Wang和Michaelis 2010)。由于与结构复杂性(长树枝状投影和轴突分支)和诸如突触传播,动作潜力传播和分子贩运的功能相关的更高的代谢需求,神经元更容易受到氧化损伤的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号