首页> 外文期刊>Journal of Space Weather and Space Climate >Analysis of signal to noise ratio in coronagraph observations of coronal mass ejections
【24h】

Analysis of signal to noise ratio in coronagraph observations of coronal mass ejections

机译:冠状大规模喷射冠状动脉观察中信噪比的分析

获取原文
       

摘要

We establish a baseline signal-to-noise ratio (SNR) requirement for the European Space Agency (ESA)-funded Solar Coronagraph for OPErations (SCOPE) instrument in its field of view of 2.5–30 solar radii based on existing observations by the Solar and Heliospheric Observatory (SOHO). Using automatic detection of coronal mass ejections (CMEs), we anaylse the impacts when SNR deviates significantly from our previously established baseline. For our analysis, SNR values are estimated from observations made by the C3 coronagraph on the Solar and Heliospheric Observatory (SOHO) spacecraft for a number of different CMEs. Additionally, we generate a series of artificial coronagraph images, each consisting of a modelled coronal background and a CME, the latter simulated using the graduated cylindrical shell (GCS) model together with the SCRaytrace code available in the Interactive Data Language (IDL) SolarSoft library. Images are created with CME SNR levels between 0.5 and 10 at the outer edge of the field of view (FOV), generated by adding Poisson noise, and velocities between 700 km s~(?1)and 2800 km s~(?1). The images are analysed for the detectability of the CME above the noise with the automatic CME detection tool CACTus. We find in the analysed C3 images that CMEs near the outer edge of the field of view are typically 2% of the total brightness and have an SNR between 1 and 4 at their leading edge. An SNR of 4 is defined as the baseline SNR for SCOPE. The automated detection of CMEs in our simulated images by CACTus succeeded well down to SNR = 1 and for CME velocities up to 1400 km s~(?1). At lower SNR and higher velocity of ≥ 2100 km s~(?1)the detection started to break down. For SCOPE, the results from the two approaches confirm that the initial design goal of SNR = 4 would, if achieved, deliver a comparable performance to established data used in operations today, with a more compact instrument design, and a margin in SNR before existing automatic detection produces significant false positives.
机译:我们基于太阳能的现有观测,我们建立了欧洲航天局(ESA) - 欧洲航天局(ESA)的欧洲航天局(ESA)的太阳能调节仪(ASA)的经营型仪器(范围)仪器。基于太阳能的现有观察,为2.5-30个太阳能线索的视野和Heliospheric Dentorialator(SOHO)。使用冠状大量喷射(CMES)的自动检测,我们将SNR从先前建立的基线偏离的影响偏离时,我们是影响。为了我们的分析,SNR值估计来自C3核心的观察结果,在太阳能和灯光手术室(SOHO)航天器中的一些不同的CMES。另外,我们生成一系列人工调节件,每个人工冠状图像,每个模型背景和CME组成,后者使用梯度圆柱壳(GCS)模型与交互式数据语言(IDL)SOLARSOFT库中可用的克拉塔码代码一起模拟。通过添加泊松噪声(FOV)的外边缘的CME SNR水平,在0.5和10之间,通过添加泊松噪声而产生的泊松噪声和700公里〜(?1)和2800公里的速度之间的速度。(?1) 。通过自动CME检测工具Cactus分析图像的可检测CME的可检测性。我们在分析的C3图像中发现,视野外边缘附近的CMES通常为总亮度的2%,并且在其前缘处具有1至4之间的SNR。 SNR为4被定义为范围的基线SNR。通过仙人掌的模拟图像中的CME自动检测得好到SNR = 1,并且对于高达1400公里的CME速度〜(?1)。在较低的SNR和≥2100公里的速度较高速度〜(?1)检测开始分解。对于范围,来自这两种方法的结果证实了SNR = 4的初始设计目标,如果达到,则为今天的运营中使用的数据提供了相当的性能,具有更紧凑的仪器设计,以及在现有之前的SNR中的余量自动检测产生显着的误报。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号