...
首页> 外文期刊>PLoS Computational Biology >Genome Scale-Differential Flux Analysis reveals deregulation of lung cell metabolism on SARS-CoV-2 infection
【24h】

Genome Scale-Differential Flux Analysis reveals deregulation of lung cell metabolism on SARS-CoV-2 infection

机译:基因组规模差异通量分析显示肺细胞代谢对SARS-COV-2感染的放松管制

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The COVID-19 pandemic is posing an unprecedented threat to the whole world. In this regard, it is absolutely imperative to understand the mechanism of metabolic reprogramming of host human cells by SARS-CoV-2. A better understanding of the metabolic alterations would aid in design of better therapeutics to deal with COVID-19 pandemic. We developed an integrated genome-scale metabolic model of normal human bronchial epithelial cells (NHBE) infected with SARS-CoV-2 using gene-expression and macromolecular make-up of the virus. The reconstructed model predicts growth rates of the virus in high agreement with the experimental measured values. Furthermore, we report a method for conducting genome-scale differential flux analysis (GS-DFA) in context-specific metabolic models. We apply the method to the context-specific model and identify severely affected metabolic modules predominantly comprising of lipid metabolism. We conduct an integrated analysis of the flux-altered reactions, host-virus protein-protein interaction network and phospho-proteomics data to understand the mechanism of flux alteration in host cells. We show that several enzymes driving the altered reactions inferred by our method to be directly interacting with viral proteins and also undergoing differential phosphorylation under diseased state. In case of SARS-CoV-2 infection, lipid metabolism particularly fatty acid oxidation, cholesterol biosynthesis and beta-oxidation cycle along with arachidonic acid metabolism are predicted to be most affected which confirms with clinical metabolomics studies. GS-DFA can be applied to existing repertoire of high-throughput proteomic or transcriptomic data in diseased condition to understand metabolic deregulation at the level of flux.
机译:Covid-19大流行对整个世界造成了前所未有的威胁。在这方面,对于SARS-COV-2了解宿主人细胞代谢重编程的机制绝对迫切。更好地了解代谢改变将有助于设计更好的治疗方法来处理Covid-19大流行。我们使用基因表达和病毒的大分子构成,开发了一种综合的人体支气管上皮细胞(NHBE)的正常人支气管上皮细胞(NHBE)的综合基因组 - 级代谢模型。重建模型与实验测量值高协议预测病毒的生长速率。此外,我们报告了在特定于上下文的代谢模型中进行基因组差分通量分析(GS-DFA)的方法。我们将该方法应用于特定于上下文的模型,并识别主要受影响的代谢模块,主要包含脂质代谢。我们对助焊剂反应,宿主病毒蛋白 - 蛋白质 - 蛋白质相互作用网络和磷蛋白质组学数据进行综合分析,以了解宿主细胞中的助焊剂变化机制。我们表明,几种酶驱动我们的方法推断出改变的反应,该方法直接与病毒蛋白与病毒蛋白相互作用,并且在患病状态下也接受差异磷酸化。在SARS-COV-2感染的情况下,预计脂质代谢特别是脂肪酸氧化,胆固醇生物合成和β-氧化循环与花生酸代谢一起受到影响最大,其临床代谢组研究证实。 GS-DFA可以应用于现有的患病条件的高通量蛋白质组学或转录组族数据的曲目,以了解助焊剂水平的代谢放松管制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号