首页> 外文期刊>PLoS Computational Biology >Learning receptive field properties of complex cells in V1
【24h】

Learning receptive field properties of complex cells in V1

机译:V1中复杂细胞的学习接受场特性

获取原文
       

摘要

There are two distinct classes of cells in the primary visual cortex (V1): simple cells and complex cells. One defining feature of complex cells is their spatial phase invariance; they respond strongly to oriented grating stimuli with a preferred orientation but with a wide range of spatial phases. A classical model of complete spatial phase invariance in complex cells is the energy model, in which the responses are the sum of the squared outputs of two linear spatially phase-shifted filters. However, recent experimental studies have shown that complex cells have a diverse range of spatial phase invariance and only a subset can be characterized by the energy model. While several models have been proposed to explain how complex cells could learn to be selective to orientation but invariant to spatial phase, most existing models overlook many biologically important details. We propose a biologically plausible model for complex cells that learns to pool inputs from simple cells based on the presentation of natural scene stimuli. The model is a three-layer network with rate-based neurons that describes the activities of LGN cells (layer 1), V1 simple cells (layer 2), and V1 complex cells (layer 3). The first two layers implement a recently proposed simple cell model that is biologically plausible and accounts for many experimental phenomena. The neural dynamics of the complex cells is modeled as the integration of simple cells inputs along with response normalization. Connections between LGN and simple cells are learned using Hebbian and anti-Hebbian plasticity. Connections between simple and complex cells are learned using a modified version of the Bienenstock, Cooper, and Munro (BCM) rule. Our results demonstrate that the learning rule can describe a diversity of complex cells, similar to those observed experimentally.
机译:主视觉皮质(V1)中有两个不同的细胞类别:简单的细胞和复杂细胞。复杂单元格的一个定义特征是它们的空间阶段不变性;它们强烈反应以优选的取向导致光栅刺激,但具有各种空间阶段。复杂单元中的完整空间阶段不变性的经典模型是能量模型,其中响应是两个线性空间相移滤波器的平方输出的总和。然而,最近的实验研究表明,复杂的电池具有不同范围的空间相位性,并且只能通过能量模型表征子集。虽然已经提出了几种模型来解释复杂的细胞如何学会选择性地选择性,但不变地到空间阶段,大多数现有模型都忽略了许多生物学上重要的细节。我们为复杂的细胞提出了一种生物合理的模型,用于基于自然场景刺激的呈现,从简单的细胞汇集池输入的复杂细胞。该模型是一种三层网络,其基于率的神经元描述LGN细胞(层1),V1简单细胞(层2)和V1复杂电池(层3)的活性。前两层实现了最近提出的简单细胞模型,该模型是生物学卓越的和占许多实验现象的账户。复杂细胞的神经动力学被建模为简单细胞输入的集成以及响应标准化。使用Hebbian和Anti-Hebbian可塑性来学习LGN和简单细胞之间的连接。使用复杂的BienenStock,Cooper和Munro(BCM)规则的修改版本学习了简单和复杂单元格之间的连接。我们的结果表明,学习规则可以描述复杂细胞的多样性,类似于实验观察的细胞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号