...
首页> 外文期刊>PLoS Computational Biology >A first-takes-all model of centriole copy number control based on cartwheel elongation
【24h】

A first-takes-all model of centriole copy number control based on cartwheel elongation

机译:基于车轮伸长率的一流的Centriole拷贝数控制型号

获取原文

摘要

How cells control the numbers of subcellular components is a fundamental question in biology. Given that biosynthetic processes are fundamentally stochastic it is utterly puzzling that some structures display no copy number variation within a cell population. Centriole biogenesis, with each centriole being duplicated once and only once per cell cycle, stands out due to its remarkable fidelity. This is a highly controlled process, which depends on lowabundance rate-limiting factors. How can exactly one centriole copy be produced given the variation in the concentration of these key factors? Hitherto, tentative explanations of this control evoked lateral inhibition- or phase separation-like mechanisms emerging from the dynamics of these rate-limiting factors but how strict centriole number is regulated remains unsolved. Here, a novel solution to centriole copy number control is proposed based on the assembly of a centriolar scaffold, the cartwheel. We assume that cartwheel building blocks accumulate around the mother centriole at supercritical concentrations, sufficient to assemble one or more cartwheels. Our key postulate is that once the first cartwheel is formed it continues to elongate by stacking the intermediate building blocks that would otherwise form supernumerary cartwheels. Using stochastic models and simulations, we show that this mechanism may ensure formation of one and only one cartwheel robustly over a wide range of parameter values. By comparison to alternative models, we conclude that the distinctive signatures of this novel mechanism are an increasing assembly time with cartwheel numbers and the translation of stochasticity in building block concentrations into variation in cartwheel numbers or length.
机译:细胞如何控制亚细胞组件的数量是生物学的基本问题。鉴于生物合成过程基本上随机性转换,它完全令人费解的是,一些结构在细胞群中显示没有拷贝数变异。乘法生物发生,每种厘啶一次,每次细胞循环只能重复一次,由于其显着的保真度,脱颖而出。这是一个高度控制的过程,这取决于低成本率限制因素。鉴于这些关键因素的浓度的变化,如何生产一份厘级副本?迄今为止,这种控制的暂定解释诱发了从这些速率限制因子的动态产生的横向抑制或相分离的机制,但是受到严格的离心数被调节的仍然是未解决的。这里,基于Cartwheel的CentRiolar支架的组装提出了一种用于离心拷贝数控制的新型解决方案。我们假设车轮构建块以超临界浓度覆盖母厘里,足以组装一个或多个车轮。我们的关键假设是,一旦形成第一个车轮,它就会通过堆叠中间积木来延长,否则将形成占星件车轮的中间积木。使用随机模型和模拟,结果表明该机制可确保稳健在很宽范围的参数值之一的形成和只有一个侧手翻。通过与替代模型进行比较,我们得出结论,这种新机制的独特签名是随着车轮数量的增加,在建立块浓度或长度的变化中,将随机性的翻译程度的翻译程度的翻译。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号