首页> 外文期刊>Advances in materials science and engineering >Finite Element Analysis of Stress on Cross-Wavy Primary Surface Recuperator Based on Thermal-Structural Coupling Model
【24h】

Finite Element Analysis of Stress on Cross-Wavy Primary Surface Recuperator Based on Thermal-Structural Coupling Model

机译:基于热结构耦合模型的跨波初级表面恢复器应力有限元分析

获取原文
           

摘要

In order to study the stress, strain and deformation of the recuperator, the thermal-structural coupling finite element analysis model of cross-wavy primary surface recuperator of gas microturbine was established. The stress of cross-wavy primary surface recuperator after operation under design conditions was analyzed by finite element method. The reliability of the material selected for the recuperator was verified, and the effects of pressure ratio and gas inlet temperature on stress and displacement of the recuperator were analyzed. The research results show that the maximum stress and strain on the gas outlet side of the recuperator are higher than the maximum stress and strain on the gas inlet side when only pressure is considered, and the result is the opposite when pressure and thermal stress are considered. The air passage of the recuperator deforms to the side of the gas passage, the air passage becomes larger, and the gas passage shrinks. With the increase of pressure ratio between air side and gas side, the maximum stress of recuperator passage also increases. When the pressure ratio increases to 8.4, the strength limit of the heat exchange fin material is reached. When the gas and air outlet temperatures remain unchanged and the thermal ratio decreases, as the gas inlet temperature increases, the maximum stress increases. For every 50?K increase in the gas inlet temperature, the maximum stress of the recuperator increases by about 2.3?MPa. The research results can be used to guide the designing and optimization of recuperator.
机译:为了研究恢复器的应力,应变和变形,建立了气体微电流横波初级表面恢复器的热结构耦合有限元分析模型。通过有限元法分析了在设计条件下操作后横波初级表面恢复器的应力。验证了用于恢复器的材料的可靠性,分析了压力比和气体入口温度对恢复器的应力和位移的影响。研究结果表明,当考虑压力时,恢复器的气体出口侧上的最大应力和应变高于气体入口侧的最大应力和应变,并且当考虑压力和热应力时,结果相反。恢复器的空气通过变形到气体通道的一侧,空气通道变大,并且气体通道收缩。随着空气侧和气体侧的压力比的增加,恢复器通道的最大应力也增加。当压力比增加到8.4时,达到热交换翅片材料的强度极限。当气体和空气出口温度保持不变并且热比降低时,随着气体入口温度的增加,最大应力增加。对于每50?K增加气体入口温度,恢复器的最大应力增加约2.3μm≤MPa。研究结果可用于指导恢复器的设计和优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号