...
首页> 外文期刊>Nature Communications >Mechanisms of microtubule dynamics and force generation examined with computational modeling and electron cryotomography
【24h】

Mechanisms of microtubule dynamics and force generation examined with computational modeling and electron cryotomography

机译:用计算建模和电子冷冻图像检查微管动力学和力产生的机制

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Microtubules are dynamic tubulin polymers responsible for many cellular processes, including the capture and segregation of chromosomes during mitosis. In contrast to textbook models of tubulin self-assembly, we have recently demonstrated that microtubules elongate by addition of bent guanosine triphosphate tubulin to the tips of curving protofilaments. Here we explore this mechanism of microtubule growth using Brownian dynamics modeling and electron cryotomography. The previously described flaring shapes of growing microtubule tips are remarkably consistent under various assembly conditions, including different tubulin concentrations, the presence or absence of a polymerization catalyst or tubulin-binding drugs. Simulations indicate that development of substantial forces during microtubule growth and shortening requires a high activation energy barrier in lateral tubulin-tubulin interactions. Modeling offers a mechanism to explain kinetochore coupling to growing microtubule tips under assisting force, and it predicts a load-dependent acceleration of microtubule assembly, providing a role for the flared morphology of growing microtubule ends.
机译:微管是负责许多细胞过程的动态微管蛋白聚合物,包括在有丝分裂过程中染色体的捕获和分离。与微管制自组装的教科书模型相比,我们最近证明了微管通过向弯曲原子丝的尖端添加了弯曲的鸟苷三磷酸纤维素来细长。在这里,我们使用褐色动力学建模和电子冷冻映射探索微管生长机制。在各种组装条件下,生长微管尖端的先前描述的辐射形状在各种组装条件下具有显着的一致,包括不同的小管蛋白浓度,聚合催化剂或浓缩蛋白结合药物的存在或不存在。模拟表明,在微管生长和缩短期间,在微管蛋白 - 微管蛋白相互作用中发展大量力的发展需要高激活能量屏障。建模提供了一种解释Kinetochore耦合到辅助力的生长微管尖端的机制,并且预测了微管组件的载荷依赖性加速度,为生长微管末端的辐射形态提供了作用。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号