首页> 外文期刊>Nature Communications >Advancing theoretical understanding and practical performance of signal processing for nonlinear optical communications through machine learning
【24h】

Advancing theoretical understanding and practical performance of signal processing for nonlinear optical communications through machine learning

机译:通过机器学习推进信号处理信号处理的理论理解和实践性能

获取原文
       

摘要

In long-haul optical communication systems, compensating nonlinear effects through digital signal processing?(DSP) is difficult due to intractable interactions between Kerr nonlinearity, chromatic dispersion?(CD) and amplified spontaneous emission?(ASE) noise from inline amplifiers. Optimizing the standard digital back propagation?(DBP) as a deep neural network?(DNN) with interleaving linear and nonlinear operations for fiber nonlinearity compensation was shown to improve transmission performance in idealized simulation environments. Here, we extend such concepts to practical single-channel and polarization division multiplexed wavelength division multiplexed experiments. We show improved performance compared to state-of-the-art DSP algorithms and additionally, the optimized DNN-based DBP parameters exhibit a mathematical structure which guides us to further analyze the noise statistics of fiber nonlinearity compensation. This machine learning-inspired analysis reveals that ASE noise and incomplete CD compensation of the Kerr nonlinear term produce extra distortions that accumulates along the DBP stages. Therefore, the best DSP should balance between suppressing these distortions and inverting the fiber propagation effects, and such trade-off shifts across different DBP stages in a quantifiable manner. Instead of the common 'black-box' approach to intractable problems, our work shows how machine learning can be a complementary tool to human analytical thinking and help advance theoretical understandings in disciplines such as optics.
机译:在长途光通信系统中,由于克尔非线性,色散Δ(CD)与来自内联放大器的自发发射ω(ASE)噪声扩增,因此通过数字信号处理来补偿非线性效应?(DSP)是难以相容的。优化标准数字背部传播?(DBP)作为深神经网络?(DNN)具有用于光纤非线性补偿的交织线性和非线性操作,以提高理想化仿真环境中的传输性能。在这里,我们将这种概念扩展到实际单通道和偏振分频多路复用波分复用实验。与最先进的DSP算法相比,我们表现出改进的性能,并且另外,基于DNN的DBP参数的优化DNN的DBP参数表现出一种数学结构,该数学结构引导我们进一步分析光纤非线性补偿的噪声统计。该机器学习启发性分析揭示了Kerr非线性术语的ASE噪声和不完整CD补偿产生沿DBP级累积的额外扭曲。因此,最佳DSP应在抑制这些失真和反转光纤传播效应之间平衡,并且以可量化的方式跨越不同的DBP阶段进行这种权衡偏移。我们的工作显示机器学习可以成为人类分析思维的互补工具,而不是常见的“黑匣子”方法,而是如何对人类分析思维的互补工具,并帮助推进光学等学科的理论谅解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号