...
首页> 外文期刊>Scientific reports. >Wave attenuation and trapping in 3D printed cantilever-in-mass metamaterials with spatially correlated variability
【24h】

Wave attenuation and trapping in 3D printed cantilever-in-mass metamaterials with spatially correlated variability

机译:在空间相关可变性的3D印刷悬臂内超材料中的波浪衰减和捕获

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Additive manufacturing has become a fundamental tool to fabricate and experimentally investigate mechanical metamaterials and phononic crystals. However, this manufacturing process produces spatially correlated variability that breaks the translational periodicity, which might compromise the wave propagation performance of metamaterials. We demonstrate that the vibration attenuation profile is strictly related to the spatial profile of the variability, and that there exists an optimal disorder degree below which the attenuation bandwidth widens; for high disorder levels, the band gap mistuning annihilates the overall attenuation. The variability also induces a spatially variant locally resonant band gap that progressively slow down the group velocity until an almost zero value, giving rise to wave trapping effect near the lower band gap boundary. Inspired by this wave trapping phenomenon, a rainbow metamaterial with linear spatial-frequency trapping is also proposed, which have potential applications in energy harvesting, spatial wave filtering and non-destructive evaluation at low frequency. This report provides a deeper understanding of the differences between numerical simulations using nominal designed properties and experimental analysis of metamaterials constructed in 3D printing. These analysis and results may extend to phononic crystals and other periodic systems to investigate their wave and dynamic performance as well as robustness under variability.
机译:添加剂制造已成为制造和实验研究机械超材料和声子晶体的基本工具。然而,该制造过程产生了破坏平移周期性的空间相关的变化,这可能会损害超材料的波传播性能。我们证明,振动衰减曲线与可变性的空间轮廓严格相关,并且存在下面的最佳紊乱程度,衰减带宽变宽;对于高紊乱水平,带隙迷雾迷失在整体衰减中。变形性也引起空间变体局部谐振带隙,其逐渐减慢群体速度,直到几乎零值,从而引起较低带隙边界附近的波捕获效果。通过该波浪捕获现象的启发,还提出了一种具有线性空间频率诱捕的彩虹超材料,其在低频下的能量收集,空间波过滤和非破坏性评估中具有潜在的应用。本报告提供了更深入地了解,使用标称设计性能和三维印刷构建的超材料的实验分析来深入了解数值模拟之间的差异。这些分析和结果可能延伸到声子晶体和其他周期性系统,以研究其波浪和动态性能以及可变性的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号