首页> 外文期刊>Scientific reports. >Computational redesign of the Escherichia coli ribose-binding protein ligand binding pocket for 1,3-cyclohexanediol and cyclohexanol
【24h】

Computational redesign of the Escherichia coli ribose-binding protein ligand binding pocket for 1,3-cyclohexanediol and cyclohexanol

机译:对1,3-环己二醇和环己醇的大肠杆菌核糖结合蛋白配体粘合剂的计算重新设计

获取原文
           

摘要

Bacterial periplasmic-binding proteins have been acclaimed as general biosensing platform, but their range of natural ligands is too limited for optimal development of chemical compound detection. Computational redesign of the ligand-binding pocket of periplasmic-binding proteins may yield variants with new properties, but, despite earlier claims, genuine changes of specificity to non-natural ligands have so far not been achieved. In order to better understand the reasons of such limited success, we revisited here the Escherichia coli RbsB ribose-binding protein, aiming to achieve perceptible transition from ribose to structurally related chemical ligands 1,3-cyclohexanediol and cyclohexanol. Combinations of mutations were computationally predicted for nine residues in the RbsB binding pocket, then synthesized and tested in an E. coli reporter chassis. Two million variants were screened in a microcolony-in-bead fluorescence-assisted sorting procedure, which yielded six mutants no longer responsive to ribose but with 1.2-1.5 times induction in presence of 1?mM 1,3-cyclohexanediol, one of which responded to cyclohexanol as well. Isothermal microcalorimetry confirmed 1,3-cyclohexanediol binding, although only two mutant proteins were sufficiently stable upon purification. Circular dichroism spectroscopy indicated discernable structural differences between these two mutant proteins and wild-type RbsB. This and further quantification of periplasmic-space abundance suggested most mutants to be prone to misfolding and/or with defects in translocation compared to wild-type. Our results thus affirm that computational design and library screening can yield RbsB mutants with recognition of non-natural but structurally similar ligands. The inherent arisal of protein instability or misfolding concomitant with designed altered ligand-binding pockets should be overcome by new experimental strategies or by improved future protein design algorithms.
机译:细菌性周质结合蛋白被称为一般的生物传感平台,但它们的天然配体范围太有限,以最佳地发育化合物检测。定瓣结合蛋白的配体结合口袋的计算重新设计可以产生具有新性质的变体,但是,尽管提前要求,但到目前为止,迄今为止对非天然配体的特异性变化尚未实现。为了更好地了解了如此有限的成功的原因,我们重新审视了大肠杆菌RBSB核糖结合蛋白,其旨在实现从核糖到结构相关的化学配体1,3-环己二醇和环己醇的可察觉过渡。突变组合被计算地预测了RBSB结合口袋中的九个残留物,然后在大肠杆菌报告机底盘中合成和测试。筛选了两百万个变体,在微核末端荧光辅助分选程序中筛选,其产生六个突变体不再响应核糖,但在1〜Mm 1,3-环己二醇存在下诱导1.2-1.5次诱导,其中一个响应对环己醇也是如此。等温微离核物证实了1,3-环己烷二醇结合,但在纯化时只有两个突变蛋白足够稳定。圆形二色谱表明这两个突变蛋白和野生型RBSB之间的可辨别结构差异。与野生型相比,这种和进一步的周质空间丰度的量化表明大多数突变体易于错误地折叠和/或易位的缺陷。因此,我们的结果肯定了计算设计和图书馆筛查可以产生具有非天然但结构相似的配体的rbsb突变体。应通过新的实验策略或改进的未来蛋白质设计算法来克服设计改变的配体结合袋的蛋白质不稳定性或错配伴随的蛋白质不稳定性或错配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号