...
首页> 外文期刊>The Journal of biological chemistry >Structure and Dynamics of Single-isoform Recombinant Neuronal Human Tubulin * ?
【24h】

Structure and Dynamics of Single-isoform Recombinant Neuronal Human Tubulin * ?

机译:单同种型重组神经元人微管蛋白的结构和动力学 * / XREF>

获取原文
           

摘要

Microtubules are polymers that cycle stochastically between polymerization and depolymerization, i.e. they exhibit “dynamic instability.” This behavior is crucial for cell division, motility, and differentiation. Although studies in the last decade have made fundamental breakthroughs in our understanding of how cellular effectors modulate microtubule dynamics, analysis of the relationship between tubulin sequence, structure, and dynamics has been held back by a lack of dynamics measurements with and structural characterization of homogeneous isotypically pure engineered tubulin. Here, we report for the first time the cryo-EM structure and in vitro dynamics parameters of recombinant isotypically pure human tubulin. α1A/βIII is a purely neuronal tubulin isoform. The 4.2-? structure of post-translationally unmodified human α1A/βIII microtubules shows overall similarity to that of heterogeneous brain microtubules, but it is distinguished by subtle differences at polymerization interfaces, which are hot spots for sequence divergence between tubulin isoforms. In vitro dynamics assays show that, like mosaic brain microtubules, recombinant homogeneous microtubules undergo dynamic instability, but they polymerize slower and have fewer catastrophes. Interestingly, we find that epitaxial growth of α1A/βIII microtubules from heterogeneous brain seeds is inefficient but can be fully rescued by incorporating as little as 5% of brain tubulin into the homogeneous α1A/βIII lattice. Our study establishes a system to examine the structure and dynamics of mammalian microtubules with well defined tubulin species and is a first and necessary step toward uncovering how tubulin genetic and chemical diversity is exploited to modulate intrinsic microtubule dynamics.
机译:微管是在聚合和解聚之间随机循环的聚合物,即它们表现出“动态不稳定”。这种行为对于细胞分裂,运动和分化至关重要。虽然在过去十年的研究中,我们了解了我们对细胞效应如何调节微管动态的理解,但通过缺乏动态测量和结构表征均匀的动力学测量,对微管序列,结构和动态之间的关系分析了对微管序列,结构和动态之间的关系的基本突破。纯工程微管蛋白。在这里,我们首次报告了重组同样纯人微管蛋白的Cryo-EM结构和体外动力学参数。 α1A/βIII是纯粹的神经细胞蛋白同种型。 4.2-?翻译后未修饰的人α1A/βIII微管的结构显示出与异质脑微管的总体相似性,但是通过聚合界面的微妙差异来区分,这是微管蛋白同种型之间的序列分歧的热点。体外动力学测定表明,如马赛克脑微管,重组均匀的微管经历动态不稳定,但它们聚合较慢并具有更少的灾难。有趣的是,从异质脑种子中发现α1A/βIII微管的外延生长是低效的,但可以通过将少量5%的脑小管蛋白掺入均匀α1A/βIIII格子中来完全救出。我们的研究建立了一种方法来检查哺乳动物微管的结构和动态,具有良好定义的小管蛋白物种,是朝露出微管蛋白遗传遗传和化学多样性如何调节内在微管动态的第一和必要步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号