...
首页> 外文期刊>Scientific reports. >Engineered yeast with a CO2-fixation pathway to improve the bio-ethanol production from xylose-mixed sugars
【24h】

Engineered yeast with a CO2-fixation pathway to improve the bio-ethanol production from xylose-mixed sugars

机译:用CO2固定途径工程酵母,以改善木糖混合糖的生物乙醇生产

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Bio-ethanol production from lignocellulosic raw materials could serve as a sustainable potential for improving the supply of liquid fuels in face of the food-to-fuel competition and the growing energy demand. Xylose is the second abundant sugar of lignocelluloses hydrolysates, but its commercial-scale conversion to ethanol by fermentation is challenged by incomplete and inefficient utilization of xylose. Here, we use a coupled strategy of simultaneous maltose utilization and in-situ carbon dioxide (CO2) fixation to achieve efficient xylose fermentation by the engineered Saccharomyces cerevisiae. Our results showed that the introduction of CO2 as electron acceptor for nicotinamide adenine dinucleotide (NADH) oxidation increased the total ethanol productivity and yield at the expense of simultaneous maltose and xylose utilization. Our achievements present an innovative strategy using CO2 to drive and redistribute the central pathways of xylose to desirable products and demonstrate a possible breakthrough in product yield of sugars.
机译:木质纤维素原料的生物乙醇生产可以作为改善液体燃料供应的可持续潜力,以面对食物 - 燃料竞争和不断增长的能源需求。木糖是木质纤维素水解产物的第二种丰富的糖,但其通过发酵对乙醇的商业规模转化被木糖的不完全和低效的利用挑战。在这里,我们使用同时​​麦芽糖利用和原位二氧化碳(CO2)固定的耦合策略,以通过工程化酿酒酵母进行高效的木糖发酵。我们的研究结果表明,作为烟酰胺腺嘌呤二核苷酸(NADH)氧化的电子受体引入CO 2增加了总乙醇的生产率和产量,以牺牲同时麦芽糖和木糖利用。我们的成就呈现了一种使用CO2的创新策略来驱动并重新分配木糖至理想产品的中央途径,并表现出糖的产品产量可能的突破。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号