...
首页> 外文期刊>RSC Advances >Single etch fabrication and characterization of robust nanoparticle tipped bi-level superhydrophobic surfaces
【24h】

Single etch fabrication and characterization of robust nanoparticle tipped bi-level superhydrophobic surfaces

机译:单蚀刻制造和鲁棒纳米粒子尖粒子型二水分超疏水表面的表征

获取原文

摘要

Though hierarchical roughness gives the best anti-wetting surfaces, their performance degrades quickly as nanostructures fail even under small mechanical stresses. Using spin coated alumina nanoparticles as an etch mask we report a single-etch based wafer-scale fabrication of robust nanoparticle tipped superhydrophobic surfaces with dual-level roughness. The top-level structures in the dual-level roughness provide mechanical robustness and the surface maintains its liquid repellency even when damaged due to mechanical shear. This complex dual-level structure leads to interesting droplet bouncing dynamics which was studied for several fluids. Though the normalized spread diameter showed good agreement with previous reports, we observed a dependence of contact time on both surface wettability and impact velocity. By breaking the impact event into spreading, recoil and detachment we show that the variation in contact time is mostly in the detachment phase. Contact time variation with impact velocity is attributed to partial impalement of the top-level nanostructures which increases the contact line stiction. For highest impact velocity while water droplets rebound completely, xanthum gum droplets having a similar surface tension and hysteresis leave residual droplets on surfaces with a higher solid fraction which is contrary to the current understanding. A large range of shear-rate dependent viscosity in conjunction with partial impalement explains this new observation.
机译:虽然等级粗糙度给出了最佳的抗润湿表面,但它们的性能即使在小机械应力下也使纳米结构失效。使用旋涂的氧化铝纳米粒子作为蚀刻掩模,我们报告了一种具有双层粗糙度的鲁棒纳米粒子的鲁棒纳米粒子的晶级制造的单蚀刻基晶级制造。双层粗糙度中的顶级结构提供机械稳健性,即使机械剪切因机械剪切而损坏,表面也会保持其液体排斥性。该复杂的双层结构导致有趣的液滴弹跳动力学,该动力学是几种流体研究的。虽然归一化的扩展直径显示出与先前报告的良好一致性,但我们观察到接触时间对表面润湿性和冲击速度的依赖性。通过将冲击事件分解成扩散,后退和脱离,我们表明接触时间的变化主要是在分离阶段。冲击速度的接触时间变化归因于顶层纳米结构的部分释放,这增加了接触线缺点。对于最高冲击速度,在水滴完全反弹时,具有相似的表面张力和滞后的Xanthum Gum液滴将残留液滴留在具有更高的固体级分的表面上,这与当前的理解相反。与局部血管相结合的大量剪切速率依赖性粘度解释了这种新观察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号