首页> 外文期刊>RSC Advances >Understanding the kinetics of thermal decomposition of 2,3-epoxy-2,3-dimethylbutane using RRKM theory
【24h】

Understanding the kinetics of thermal decomposition of 2,3-epoxy-2,3-dimethylbutane using RRKM theory

机译:理解使用RRKM理论的2,3-环氧-2,3-二甲基丁烷的热分解动力学

获取原文
获取外文期刊封面目录资料

摘要

The thermal decomposition kinetics of 2,3-epoxy-2,3-dimethylbutane have been studied computationally using density functional theory, along with various exchange–correlation functionals and an extremely large basis set. The calculated energy profiles have been supplemented with calculations of kinetic rate constants and branching ratios under atmospheric pressure and in the fall-off regime have been supplied, using transition state theory (TST) and statistical Rice–Ramsperger–Kassel–Marcus (RRKM) theory. Kinetic rate constants and branching ratios under atmospheric pressure and in the fall-off regime have been supplied, using transition state and RRKM theories. By comparison with experiment, all our calculations indicate that, from a kinetic viewpoint, the most favorable process is thermal decomposition of 2,3-epoxy-2,3-dimethylbutane into the 2,3-dimethylbut-3-en-2-ol, whereas under thermodynamic control of the reactions, the most abundant product derived from the 2,3-epoxy-2,3-dimethylbutane species will be the 3,3-dimethylbutan-2-one species. The regioselectivity of the decomposition decreases with increasing temperatures and decreasing pressures. In line with rather larger energy barriers, pressures larger than 10 ~(?6) bar are in general sufficient for ensuring a saturation of the computed unimolecular kinetic rate constants compared with the high-pressure limit (TST) of the RRKM unimolecular rate constants. The bonding evolution theory indicated that thermal decomposition of 2,3-epoxy-2,3-dimethylbutane into the 2,3-dimethylbut-3-en-2-ol takes place along three differentiated successive structural stability domains after passing the reactant from the associated transition state.
机译:已经使用密度泛函理论计算了2,3-环氧-2,3-二甲基丁烷的热分解动力学,以及各种交换相关功能和极大的基础集。计算出的能量分布已经补充了在大气压下的动力速率常数和分支比率计算,并且在使用过渡状态理论(TST)和统计水稻 - Ramsperger-Kassel-Marcus(RRKM)理论中提供了掉落的制度。 。使用过渡状态和RRKM理论,提供了大气压和跌倒制度下的动力速率常数和分支比。通过与实验进行比较,我们的所有计算表明,从动力学观点来看,最有利的方法是2,3-环氧-2,3-二甲基丁烷的热分解成2,3-二甲基丁基-3-烯-2-醇,而在热力学控制在反应的情况下,衍生自2,3-环氧-2,3-二甲基丁烷物质的最丰富的产物将是3,3-二甲基丁丹-2-一种物种。分解的区域选择随着温度的增加和压力而降低。符合相当更大的能量屏障,大于10〜(Δ6)棒的压力通常足以确保计算的单分子速率常数的饱和度与RRKM单分子率常数的高压极限(TST)相比。粘接演化理论表明,将2,3-环氧-2,3-二甲基丁烷的热分解成2,3-二甲基-3-烯-2-醇在将反应物从中通过后的三个分化的连续的结构稳定性结构域进行相关的过渡状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号