...
首页> 外文期刊>RSC Advances >Improved performance of poly(vinyl pyrrolidone)/phosphonated poly(2,6-dimethyl-1,4-phenylene oxide)/graphitic carbon nitride nanocomposite membranes for high temperature proton exchange membrane fuel cells
【24h】

Improved performance of poly(vinyl pyrrolidone)/phosphonated poly(2,6-dimethyl-1,4-phenylene oxide)/graphitic carbon nitride nanocomposite membranes for high temperature proton exchange membrane fuel cells

机译:改进的聚(乙烯基吡咯烷酮)/膦酸酯聚(2,6-二甲基-1,4-苯基氧化物)/石墨碳氮化物纳米复合材料用于高温质子交换膜燃料电池的性能

获取原文

摘要

To achieve desirable performance of a polymer electrolyte membrane with higher proton conduction and better mechanical strength is a challenging work in the development of the phosphoric acid (PA) doped solid-state membrane for high temperature proton exchange membrane fuel cells. Firstly, phosphonated poly(2,6-dimethyl-1,4-phenylene oxide) (pPPO) was prepared by the bromination and phosphonation of poly(2,6-dimethyl-1,4-phenylene oxide). Afterward, a series of poly(vinyl pyrrolidone)–phosphonated poly(2,6-dimethyl-1,4-phenylene oxide) (PVP/pPPO) blend membranes and poly(vinyl pyrrolidone)–phosphonated poly(2,6-dimethyl-1,4-phenylene oxide)–graphitic carbon nitride (PVP/pPPO/g-C _(3) N _(4) ) nanocomposite membranes were prepared by a solution casting method. The PA uptake, volume swelling ratio, and proton conductivity of the PVP/pPPO blend membrane increased with increasing PVP content. But PA molecules drastically reduced the mechanical strength of the PVP/pPPO blend membrane. The incorporation of g-C _(3) N _(4) improved the proton conduction and mechanical properties of the nanocomposite membrane due to the proton hopped sites provided by NH _(2) and the interaction of g-C _(3) N _(4) and polymer chains. A higher proton conductivity of 74.4 mS cm ~(?1) and a higher power density of 294 mW cm ~(?2) at 180 °C without additional humidifying were observed for the PA doped PVP/pPPO nanocomposite membrane containing 5 wt% g-C _(3) N _(4) . The results show the PVP/pPPO nanocomposite membrane as a potential polymer electrolyte membrane for high temperature fuel cells.
机译:为了实现具有更高质子传导的聚合物电解质膜的理想性能,并且更好的机械强度是用于高温质子交换膜燃料电池的磷酸(PA)掺杂固态膜的挑战性。首先,通过聚(2,6-二甲基-1,4-亚苯基氧化物)制备膦酸化聚(2,6-二甲基-1,4-氧化烯)(PPPO)制备。之后,一系列聚(乙烯基吡咯烷酮) - 膦酸化聚(2,6-二甲基-1,4-亚苯基)(PVP / PPPO)共混膜和聚(乙烯基吡咯烷酮) - 膦酸化聚(2,6-二甲基 - 通过溶液浇铸方法制备1,4-亚苯基氧化物)焦晶碳氮化物(PVP / PPPO / GC _(3)N _(4))纳米复合膜。 PVP / PPPO混合物膜的PA吸收,体积溶胀比和质子电导率随着PVP含量的增加而增加。但PA分子急剧降低了PVP / PPPO混合物膜的机械强度。 GC _(3)N _(4)的掺入改善了纳米复合膜的质子传导和机械性能,由于NH _(2)提供的质子跳跃位点和GC _(3)N _的相互作用(4 )和聚合物链。对于含有5wt%GC的PA掺杂PVP / PPPO纳米复合膜,观察到较高的质子电导率为74.4ms cm〜(α1)和在180℃下的较高功率密度为294mW cm〜(Δ2),含有5wt%gc的PA掺杂PVP / PPPO纳米复合膜_(3)n _(4)。结果表明,PVP / PPPO纳米复合膜作为用于高温燃料电池的潜在聚合物电解质膜。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号