...
首页> 外文期刊>RSC Advances >Enhanced corrosion protection and biocompatibility of a PLGA–silane coating on AZ31 Mg alloy for orthopaedic applications
【24h】

Enhanced corrosion protection and biocompatibility of a PLGA–silane coating on AZ31 Mg alloy for orthopaedic applications

机译:增强AZ31mg合金的PLGA-硅烷涂层的腐蚀保护和生物相容性,用于整形外科应用

获取原文
           

摘要

This paper reports a multi-step procedure to fabricate a novel corrosion resistant and biocompatible PLGA–silane coating on the magnesium (Mg) alloy AZ31. The first step involves alkaline passivation followed by dip coating in a methyltriethoxysilane (MTES) and tetraethoxysilane (TEOS) mixture to produce a cross-linked siloxane coating. The second step is to impart an amine functionalization to the silane modified surface by using 3-aminopropyl-triethoxy silane (APTES) for promoting adhesion of the acid terminated poly-(lactic- co -glycolic) acid (PLGA) as a final coating step. Static contact angle measurements, Fourier transform infrared spectroscopy and scanning electron microscopy analysis confirmed the successful assembly of coatings on the AZ31 Mg alloy. Potentiodynamic polarization and impedance spectroscopy studies showed the improved initial corrosion resistance of the coated AZ31 substrate. Measurements of magnesium ion release, pH changes and hydrogen evolution showed enhanced corrosion protection of coated substrate over uncoated AZ31 alloy for 21 and 14 days respectively. The MTT assay, live–dead cells staining, DNA quantification and alkaline phosphatase activity assay were used to measure the biocompatibility, proliferation and differentiation of MC3T3-E1 osteoblast cells. Scanning electron microscopy was used to observe cell morphology and integration with the coated surface. The coated substrate showed improved cytocompatibility as compared to the uncoated AZ31 alloy surface. The application of such coatings on biodegradable Mg alloys enhanced their corrosion resistance and biocompatibility. An additional advantage is that the coating also served as a potential delivery vehicle for specific drugs and bio-active molecules releasing from an implant surface as the coatings, such as PLGA, adapt during the corrosion process, thereby enhancing bone regeneration.
机译:本文报道的多步骤过程来制造的镁(Mg)合金AZ31一种新颖的抗腐蚀和生物相容的PLGA-硅烷涂层。第一个步骤涉及碱性钝化,随后在甲基三乙氧基硅烷(MTES)和四乙氧基硅烷(TEOS)的混合物浸渍涂布,以产生交联的硅氧烷涂层。第二步骤是通过使用3-氨丙基三乙氧基硅烷(APTES)用于促进酸的粘着赋予胺官能化的硅烷改性的表面封端的聚(乳酸 - 共-glycolic)酸(PLGA)作为最终涂布步骤。静态接触角测量,傅里叶变换红外光谱和扫描电子显微镜分析证实在AZ31镁合金涂层的成功组装。极化和阻抗谱的研究表明涂覆AZ31衬底的改进的初始耐腐蚀性。镁离子的释放,pH变化和析氢的测量表明分别增强涂覆的基材上未涂覆的AZ31合金的腐蚀保护21和14天。 MTT测定,活死细胞染色,DNA定量和碱性磷酸酶活性测定用于测量MC3T3-E1骨细胞的生物相容性,增殖和分化。扫描电子显微镜下观察细胞的形态和整合与所述包被表面。相比于未涂覆的AZ31合金表面的涂覆的基材显示出改善的细胞相容性。这种涂层的可生物降解的镁合金中的应用提高了他们的耐蚀性和生物相容性。另外一个优点是,所述涂层还充当潜在递送载体特异性药物和生物活性分子从植入物表面作为涂层,如PLGA释放,在腐蚀过程相适应,从而增强骨再生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号