...
首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Thermal Lattice Boltzmann Model for Nonisothermal Gas Flow in a Two-Dimensional Microchannel
【24h】

Thermal Lattice Boltzmann Model for Nonisothermal Gas Flow in a Two-Dimensional Microchannel

机译:二维微通道中非热气流的热格螺栓玻璃模型

获取原文
           

摘要

In this paper, the Thermal Lattice Boltzmann Method (TLBM) is used for the simulation of a gas microflow. A 2D heated microchannel flow driven by a constant inlet velocity profile Uin and nonisothermal walls is investigated numerically. Two cases of micro-Poiseuille flow are considered in the present study. In the first case, the temperature of the walls is kept uniform, equal to zero; therefore, the gas is driven along the channel under the inlet parameters of velocity and temperature. However, in the second one, the gas flow is also induced by the effect of temperature decreasing applied on the walls. For consistent results, velocity slip and temperature jump boundary conditions are used to capture the nonequilibrium effects near the walls. The rarefaction effects described by the Knudsen number, on the velocity and temperature profiles are evaluated. The aim of this study is to prove the efficiency of the TLBM method to simulate Poiseuille flow in case of nonisothermal walls, based on the average value of the Nusselt number and by comparing the results obtained from the TLBM with those obtained using the Finite Difference Method (FDM). The results also show an interesting sensitivity of velocity and temperature profiles with the rarefaction degree and the imposed temperature gradient of the walls.
机译:在本文中,热晶格Boltzmann方法(TLBM)用于模拟气体微射线。在数值上研究由恒定入口速度分布uin和非吸收壁驱动的2d加热的微通道流。本研究中考虑了两种微蒲化流程。在第一种情况下,壁的温度保持均匀,等于零;因此,在速度和温度的入口参数下沿着通道驱动气体。然而,在第二个中,气流也通过施加在壁上的温度降低的影响而引起的。对于一致的结果,使用速度滑动和温度跳跃边界条件来捕获墙壁附近的非纤维效应。评估了knudsen数,对速度和温度剖面描述的稀疏效应进行了评估。本研究的目的是为了证明TLBM方法的效率,用于在非等温壁的情况下模拟Poiseuille流动,基于NUSERET数的平均值,并通过将从TLBM获得的结果与使用有限差分法获得的结果进行比较(FDM)。结果还显示了速度和温度曲线的有趣灵敏度,具有稀疏度和壁的施加温度梯度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号