首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Generalized Method of Modeling Minute-in-Trail Strategy for Air Traffic Flow Management
【24h】

Generalized Method of Modeling Minute-in-Trail Strategy for Air Traffic Flow Management

机译:空中交通流量管理中分钟策略的广义方法

获取原文
           

摘要

With the rapidly increasing air traffic demand, the demand-capacity imbalance problem of sector is surfaced gradually. And, minute-in-trail/miles-in-trail (MIT) is an effective strategy to balance the traffic demands and capacity. In this work, we consider the MIT strategy generation problem for the situation that a sector with NC corridors is affected by convection weather for Timb time periods. Given the sector capacity Cwt, t=1,…,Timb, under convection weather, we propose a three-phase optimization framework to generate E-MIT strategy to achieve the demand-capacity balance. First, we take the sector capacity of Timb time periods under convection weather as a whole, that is, ∑t=1TimbCwt, and then a dynamical programming-based method is proposed to allocate ∑t=1TimbCwt for NC corridors such that the capacity resources Awi of each corridor CORi, i=1,…,NC, can be determined. Second, a 0-1 combination algorithm is used to allocate the capacity resources Awi into Timb time periods for each corridor CORi such that the candidate strategies set CSi of each corridor can be determined, where a strategy solji∈CSi is an array with Timb numbers and each number represents the maximum allowed number of flights entering into sector from CORi in one time period. Finally, a modified shortest path algorithm based on the backtracking method is taken to select the optimal strategy from CSi for NC corridors such that the total delay cost and air traffic control load are minimized. Additionally, a dynamical programming-based method is proposed to generate E-MIT strategy for the special case that the sector capacities of different time periods under convection weather are the same, that is, Cw1=Cw2=?=CwTimb, and the generated strategies of Timb time periods for a corridor are also the same. Experimental results show that compared with the proposed three-phase optimization method, rate-based method and need-based method will spend more 8.1% and 6.3% of delay cost, respectively. When considering the special case, the experimental results show that compared with the proposed dynamical programming-based method, the rate-based method and need-based method will spend more 10.2% and 7.5% of delay cost, respectively.
机译:随着空中交通需求的迅速增加,部门的需求不平衡问题逐渐浮出水面。并且,小径/数英里的路径(MIT)是平衡交通需求和能力的有效策略。在这项工作中,我们考虑了麻省理工学院策略生成问题,以便与NC走廊的扇区受到对流天气的影响,因为蒂姆时间段的对流天气影响。鉴于扇区容量CWT,T = 1,......,TIMB,在对流天气下,我们提出了一个三相优化框架,以产生E-MIT策略来实现需求 - 能力余额。首先,我们将Timb时间段内的部门容量作为整体上的对流天气下,即Σt= 1timbcwt,然后提出了一种基于动态编程的方法来分配Σt= 1timbcwt,以使能力资源可以确定每个走廊cori的AWI,i = 1,...,nc,可以确定。其次,使用0-1组合算法将容量资源AWI分配到每个CORRIDOR CORI的TIMB时间段,使得可以确定每个走廊的CSI,其中策略SOLJI∈CSI是具有TIMB编号的数组每个数字都代表了在一次时间内从Cori进入Cori的最大航班航班数量。最后,采用基于回溯方法的修改的最短路径算法来选择来自CSI的CSI对于NC走廊的最佳策略,使得总延迟成本和空中流量控制负载最小化。另外,提出了一种基于动态编程的方法来为特殊情况生成E-MIT策略,即对流天气下不同时间段的扇区容量是相同的,即CW1 = CW2 =?= CWTIMB和生成的策略走廊的Timb时间段也是一样的。实验结果表明,与所提出的三相优化方法相比,基于速率的方法和基于需求的方法将分别花费更多8.1%和6.3%的延迟成本。在考虑特殊情况时,实验结果表明,与所提出的基于动力学编程的方法相比,基于速率的方法和基于需求的方法分别花费更多的10.2%和7.5%的延迟成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号