首页> 外文期刊>MATEC Web of Conferences >Analysis of optimum wire rope configuration for equal unidirectional torsional stiffness for flexible steering shaft
【24h】

Analysis of optimum wire rope configuration for equal unidirectional torsional stiffness for flexible steering shaft

机译:柔性转向轴等单向扭转刚度的最佳钢丝绳配置分析

获取原文
       

摘要

The design and modeling of Low Stiffness Resilience Shaft (LSRS) for the Semi-Active Steering (SAS) system using wire ropes is discussed in this paper, along with the static structural torsion test simulation of the wire ropes in order to determine the best possible configuration which serves the purpose of an LSRS. The importance of this study arises due to the unidirectional torsional properties of a wire rope. For an effective operational LSRS, the wire ropes need to have similar angular deflection in both the clockwise and anti-clockwise direction. LSRS, an integral component of the SAS is a flexible shaft that can replace the conventional rigid shaft of the steering system and allows active control to be performed. 3D solid models of the simple strand and the 4 strand wire ropes used in finite element analysis were generated in CAD software SolidWorksTM. The single strand and the different configuration of wire ropes required to function the LSRS effectively were then analyzed using Finite element simulation in ANSYSTM. A single wire rope could not be used because its construction has inconsistency in the torsional stiffness in clockwise and anti-clockwise direction. The single-strand right-direction lay wire rope is found to have 16.05% angular deflection percentage difference in the clockwise and anticlockwise directions which indicates that using a single strand wire rope for the LSRS will cause the vehicle to have a variable response in the clockwise and anti clockwise direction upon turning the steering wheel. Due to this inconsistency, two variations namely Variation 1 and Variation 2 with arrangement of 4 strand wire rope were devised so that the angular deflection percentage difference would be negligible. Simulation results indicated that Variation 1 of the two variations with an angular deflection percentage difference of 0.34% in the clockwise and anti-clockwise direction respectively is best suited for the use in LSRS as it has almost negligible angular deflection percentage difference and will allow the vehicle to have similar steering response in the clockwise and anti-clockwise direction.
机译:本文讨论了使用线索绳索的半主动转向(SAS)系统的低刚度弹性轴(LSR)的设计和建模,以及电线绳的静态结构扭转测试模拟,以确定最佳服务于LSR的目的。由于钢丝绳的单向扭转性质,本研究的重要性出现。对于有效的操作LSR,电线绳需要在顺时针和逆时针方向上具有相似的角度偏转。 LSRS,SAS的整体部件是一种柔性部件,可以更换转向系统的传统刚性轴,并允许进行主动控制。在CAD软件SolidWorkstm中产生了三维股线的实体模型和有限元分析中使用的4圈绳索。然后使用Ansystm中的有限元模拟分析单股和功能所需的线绳的不同配置。不能使用单丝绳,因为其结构在顺时针和逆时针方向的扭转刚度中具有不一致。发现单链右方向封口钢丝绳具有16.05%的角度偏转百分比差,顺时针和逆时针方向,表示使用用于LSR的单链钢丝绳,将导致车辆顺时针具有可变响应在转动方向盘时抗顺时针方向。由于这种不一致,设计了两个变化的变化1和具有4个钢绞线绳索的变化2,使得角度偏转百分比差异可以忽略不计。仿真结果表明,两个变化的变化1分别在顺时针和逆时针方向上的角度偏转百分比差0.34%,最适合在LSR中使用,因为它具有几乎可忽略的角度偏转百分比差异并且允许车辆以顺时针和逆时针方向具有类似的转向响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号