...
首页> 外文期刊>Atmospheric chemistry and physics >Inverse modeling of SOsub2/sub and NOsubix/i/sub emissions over China using multisensor satellite data – Part 2: Downscaling techniques for air quality analysis and forecasts
【24h】

Inverse modeling of SOsub2/sub and NOsubix/i/sub emissions over China using multisensor satellite data – Part 2: Downscaling techniques for air quality analysis and forecasts

机译:使用多传感器卫星数据的逆建模如此 2 和No 排放 - 第2部分:空气质量分析和预测的缩小技术

获取原文
           

摘要

Top-down emission estimates provide valuable up-to-date information on pollution sources; however, the computational effort and spatial resolution of satellite products involved with developing these emissions often require them to be estimated at resolutions that are much coarser than is necessary for regional air quality forecasting. This work thus introduces several approaches to downscaling coarse-resolution (2°×2.5°) posterior SO2 and NOx emissions for improving air quality assessment and forecasts over China in October 2013. As in Part?1 of this study, these 2°×2.5° posterior SO2 and NOx emission inventories are obtained from GEOS-Chem adjoint modeling with the constraints of OMPS SO2 and NO2 products retrieved at 50?km×50?km at nadir and ~190km×50km at the edge of ground track. The prior emission inventory (MIX) and the posterior GEOS-Chem simulations of surface SO2 and NO2 concentrations at coarse resolution underestimate observed hot spots, which is called the coarse-grid smearing (CGS) effect. To mitigate the CGS effect, four methods are developed: (a) downscale 2°×2.5° GEOS-Chem surface SO2 and NO2 concentrations to the resolution of 0.25°×0.3125° through a dynamic downscaling concentration (MIX-DDC) approach, which assumes that the 0.25°×0.3125° simulation using the prior MIX emissions has the correct spatial distribution of SO2 and NO2 concentrations but a systematic bias; (b) downscale surface NO2 simulations at 2°×2.5° to 0.05°×0.05° according to the spatial distribution of Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime light (NL) observations (e.g., NL-DC approach) based on correlation between VIIRS NL intensity with TROPOspheric Monitoring Instrument (TROPOMI) NO2 observations; (c) downscale posterior emissions (DE) of SO2 and NOx to 0.25°×0.3125° with the assumption that the prior fine-resolution MIX inventory has the correct spatial distribution (e.g., MIX-DE approach); and (d) downscale posterior NOx emissions using VIIRS NL observations (e.g., NL-DE approach). Numerical experiments reveal that (a) using the MIX-DDC approach, posterior SO2 and NO2 simulations improve on the corresponding MIX prior simulations with normalized centered root mean square error (NCRMSE) decreases of 63.7 % and 30.2 %, respectively; (b) the posterior NO2 simulation has an NCRMSE that is 17.9 % smaller than the prior when they are both downscaled through NL-DC, and NL-DC is able to better mitigate the CGS effect than MIX-DDC; (c) the simulation at 0.25°×0.3125° using the MIX-DE approach has NCRMSEs that are 58.8 % and 14.7 % smaller than the prior 0.25°×0.3125° MIX simulation for surface SO2 and NO2 concentrations, respectively, but the RMSE from the MIX-DE posterior simulation is slightly larger than that from the MIX-DDC posterior simulation for both SO2 and NO2; (d) the NL-DE posterior NO2 simulation also improves on the prior MIX simulation at 0.25°×0.3125°, but it is worse than the MIX-DE posterior simulation; (e) in terms of evaluating the downscaled SO2 and NO2 simulations simultaneously, using the posterior SO2 and NOx emissions from joint inverse modeling of both species is better than only using one (SO2 or NOx) emission from corresponding single-species inverse modeling and is similar to using the posterior emissions of SO2 and NOx emission inventories respectively from single-species inverse modeling. Forecasts of surface concentrations for November?2013 using the posterior emissions obtained by applying the posterior MIX-DE emissions for October 2013 with the monthly variation information derived from the prior MIX emission inventory show that (a) the improvements of forecasting surface SO2 concentrations through MIX-DE and MIX-DDC are comparable; (b) for the NO2 forecast, MIX-DE shows larger improvement than NL-DE and MIX-DDC; (c) NL-DC is able to better decrease the CGS effect than MIX-DE but shows larger NCRMSE; (d) the forecast of surface O3 concentrations is improved by MIX-DE downscaled posterior NOx emissions. Overall, for practical forecasting of air quality, it is recommended to use satellite-based observation already available from the last month to jointly constrain SO2 and NO2 emissions at coarser resolution and then downscale these posterior emissions at finer spatial resolution suitable for regional air quality modeling for the present month.
机译:自上而下的排放估计提供有关污染源的有价值的最新信息;然而,涉及开发这些排放的卫星产品的计算努力和空间分辨率通常要求他们估计比区域空气质量预测所需的决议估计。因此,这项工作引入了较次粗糙分辨率(2°×2.5°)的粗糙度的方法和NOx排放,用于改善2013年10月的空气质量评估和预测。本研究中的第1部分,这2°×2.5 °后部SO2和NOx排放清单是从Geos-Chem伴随模型获得的,其由OMP SO2和No2产品在Nadir处的50Ωmp×50Ωkm处检验到地面轨道边缘的〜190km×50km。在低估的观察到的热点下,表面SO2和NO2浓度的现有排放库存(混合物)和后核 - 化学模拟,其被称为粗栅涂抹(CGS)效应。为了减轻CGS效果,开发了四种方法:(a)通过动态俯卧率(MIX-DDC)方法(MIX-DDC)方法,(a)缩小2°×2.5°Geos-chem表面So2和No2浓度为0.25°×0.3125°的分辨率假设使用先前混合排放的0.25°×0.3125°仿真具有SO2和NO2浓度的正确空间分布,而是系统偏差; (b)根据可见红外成像辐射计套件(VIIRS)夜间光(NL)观测(例如,NL-DC方法)的空间分布,(B)低档表面NO2模拟2°×2.5°×0.05°×0.05°×0.05° Viirs NL强度与对流层监测仪器(Tropomi)No2观察结果; (c)SO2的低速排放(DE)和NOx至0.25°×0.3125°,假设先前的微分辨率混合库存具有正确的空间分布(例如,混合方法); (d)使用VIIRS NL观测(例如,NL-DE接近)的低级后噪声排放。数值实验揭示(a)使用混合DDC方法,后部SO2和NO2模拟改善了具有归一化中心均方误差(NCRMSE)的相应混合的先前模拟分别降低了63.7%和30.2%; (b)后部NO2模拟的NCRMSE比通过NL-DC倒数小于先前的NCRMSE,并且NL-DC能够比MIX DDC更好地减轻CGS效果; (c)使用MIX-DE方法的0.25°×0.3125°的模拟具有58.8%,比以前的0.25°×0.3125°混合模拟,分别为58.8%和14.7%,分别用于表面SO2和NO2浓度,但是来自的RMSE Mix-de后模拟略大于SO2和NO2的MIX-DDC后仿真; (d)NL-DE后部NO2模拟还改善了0.25°×0.3125°的先前混合模拟,但比MIX-DE后仿真更差; (e)根据同时评估较低的SO2和NO2模拟,使用两种物种的关节逆建模的后验SO2和NOx排放优于使用相应的单种逆建模的一个(SO2或NOx)发射,并且是类似于使用SO2和NOx排放清单的后序排放分别从单一物种反向建模。 2013年11月的表面浓度预测2013年使用通过从先前的混合排放库存的月度变异信息应用了2013年10月10日的后部混合排放,显示(a)通过混合改善预测表面SO2浓度的预测-de和mix-ddc是可比的; (b)对于NO2预测,MIX-DE显示比NL-DE和MIX-DDC更大的改善; (c)NL-DC能够更好地降低CGS效果而不是混合物 - 但显示较大的NCRMSE; (d)通过混合 - DE较低的后部NOx排放来改善表面O3浓度的预测。总的来说,对于空气质量的实际预测,建议使用上个月已经提供的卫星的观察,以共同约束SO2和NO2排放,然后在适合区域空气质量建模的更精细的空间分辨率下降低这些后部排放量目前。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号