...
首页> 外文期刊>Journal of nanomaterials >Printability Optimization of Gelatin-Alginate Bioinks by Cellulose Nanofiber Modification for Potential Meniscus Bioprinting
【24h】

Printability Optimization of Gelatin-Alginate Bioinks by Cellulose Nanofiber Modification for Potential Meniscus Bioprinting

机译:通过纤维素纳米纤维改性纤维素植物生物纤维改性的可印刷性优化

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Meniscal injury is more likely to cause a permanent alteration of the biomechanical and biological environment of the knee joint, mainly due to the morphological mismatch and substantial loss of meniscal tissues. Herein, to overcome this challenge, we developed an improved bioink with enhanced printability, while maintaining the biocompatibility of major cellular component of the meniscus, namely fibrochondrocytes. Firstly, cellulose nanofiber (CNF) was mixed with gelatin-alginate thermal-responsive bioinks to improve the printability. Afterward, individual-specific meniscal prototypes based on the 3D reconstruction of MRI data were bioprinted using our bioink. The rheological and printability properties of the bioinks were characterized to select proper bioink content and bioprinting parameters. And then, a series of biological characterizations of the bioprinted samples, such as cell viability, metabolic activity, and extracellular matrix accumulation, were carried out in vitro. The results indicated that superior rheological performance and printability of CNF-modified bioink were achieved, ensuring high-precision bioprinting of specific-designed meniscal prototype when compared with the non-CNF-containing counterparts. Meanwhile, biological tests indicated that fibrochondrocytes encapsulated within the CNF-modified bioink maintained long-term cellular viability as well as acceptable extracellular matrix accumulation. This study demonstrates that the CNF-modified bioink is in favor of the printing fidelity of specific meniscus by improved rheological properties, minimizing the mismatch between artificial meniscal implants and native knee joint tissues, thereby permitting the evolution of clinical therapeutic methods of meniscal reconstruction.
机译:半月板伤害更有可能导致膝关节的生物力学和生物环境永久性改变,主要是由于形态错配和模块组织的大量损失。在此,为了克服这一挑战,我们开发了一种改进的生物链,具有增强的可印刷性,同时保持半细胞组分的生物相容性,即纤维纤维素。首先,将纤维素纳米纤维(CNF)与明胶 - 藻酸盐热响应性的生物显着混合以提高可印刷性。之后,使用我们的生物链,基于MRI数据的3D重建的个人特定的半月板原型。生物链的流变和可印刷性性质的特征在于选择适当的生物链内容和生物印刷图参数。然后,在体外进行一系列生物印刷样品的生物特征,例如细胞活力,代谢活性和细胞外基质累积。结果表明,与非CNF的对应物相比,实现了CNF改性生物链的优异流变性能和CNF改性生物链的可印刷性,确保了特定设计的半月板原型的高精度生物印刷。同时,生物学试验表明,在CNF改性的生物芯片内包封的纤维晶状体保持长期细胞活力以及可接受的细胞外基质累积。该研究表明,CNF改性的生物链有利于通过改善的流变性能,最小化人造半月板植入物和天然膝关节组织之间的错配,从而允许临床治疗方法的混合物重建的演变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号