首页> 外文期刊>Defence science journal >A Thermal Cycling Route for Processing Nano-grains in AISI 316L Stainless Steel for Improved Tensile Deformation Behaviour
【24h】

A Thermal Cycling Route for Processing Nano-grains in AISI 316L Stainless Steel for Improved Tensile Deformation Behaviour

机译:用于改进拉伸变形行为的AISI 316L不锈钢中纳米颗粒的热循环途径

获取原文
获取外文期刊封面目录资料

摘要

The present work significantly improved the mechanical strength of AISI 316L stainless steel by producing nano-sized grains. Steel was subjected to cold rolling followed by repetitive thermal cycling to produce ultra-fine/ nano-sized grains. The optimum processing parameters including extent of cold deformation, annealing temperature for thermal cycling, soaking period during each thermal cycle, and number of thermal cycles were determined through a systematic step-by-step procedure. After conducting thermal cycling under optimum conditions, a significant amount of grain size reduction was achieved. The effect of nano-sized grains on tensile deformation behavior was analysed. High cold deformation resulted in increased amount of stored strain energy. The stored strain energy accelerated the re-crystallisation kinetics during the thermal cycling process. Every thermal cycle resulted in irregular dispersal of stored energy. This irregular dispersal of stored energy favoured recrystallisation rather than grain growth and led to refinement of grains, in the absence of strain induced martensite. Repetitive thermal cycling promoted grain refinement and resulted in very significant grain size reduction with resultant grain size in the range of 800–1200 nm as compared to initial size of 90–120 μm. The resultant microstructure improved tensile strength by106.8 per cent, from 590 MPa to 1220 MPa.
机译:本工作通过生产纳米粒度的纳米粒度显着提高了AISI 316L不锈钢的机械强度。钢经受冷轧,然后重复热循环,以产生超细/纳米尺寸的晶粒。最佳处理参数包括冷变形程度,热循环的退火温度,每次热循环期间的浸泡周期,以及通过系统逐步的方法确定热循环的数量。在最佳条件下进行热循环后,实现了大量的晶粒尺寸。分析了纳米尺寸颗粒对拉伸变形行为的影响。高冷变形导致储存应变能量增加。储存的应变能在热循环过程中加速了再结晶动力学。每个热循环导致储存能量不规则分散。这种不规则的储存能量的分散有利于重结晶而不是晶粒生长,并导致谷物的细化,在没有应变诱导的马氏体的情况下。重复热循环促进晶粒细化,导致在800-1200nm的粒度范围内降低了非常显着的粒度,与初始尺寸为90-120μm。得到的微观结构从590MPa至1220MPa改善抗拉强度106.8%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号