首页> 外文期刊>Hydrology and Earth System Sciences >Using altimetry observations combined with GRACE to select parameter sets of a hydrological model in a data-scarce region
【24h】

Using altimetry observations combined with GRACE to select parameter sets of a hydrological model in a data-scarce region

机译:使用Altimetry观测结合宽限地选择数据稀缺区域中水文模型的参数集

获取原文
获取外文期刊封面目录资料

摘要

Limited availability of ground measurements in the vast majority of river basins world-wide increases the value of alternative data sources such as satellite observations in hydrological modelling. This study investigates the potential of using remotely sensed river water levels, i.e. altimetry observations, from multiple satellite missions to identify parameter sets for a?hydrological model in the semi-arid Luangwa River basin in Zambia. A?distributed process-based rainfall–runoff model with sub-grid process heterogeneity was developed and run on a?daily timescale for the time period 2002 to 2016. As a?benchmark, feasible model parameter sets were identified using traditional model calibration with observed river discharge data. For the parameter identification using remote sensing, data from the Gravity Recovery and Climate Experiment (GRACE) were used in a?first step to restrict the feasible parameter sets based on the seasonal fluctuations in total water storage. Next, three alternative ways of further restricting feasible model parameter sets using satellite altimetry time series from 18 different locations along the river were compared. In the calibrated benchmark case, daily river flows were reproduced relatively well with an optimum Nash–Sutcliffe efficiency of ENS,Q=0.78 (5/95th percentiles of all feasible solutions ENS,Q,5/95=0.61–0.75). When using only GRACE observations to restrict the parameter space, assuming no discharge observations are available, an optimum of ENS,Q=-1.4 (ENS,Q,5/95=-2.3–0.38) with respect to discharge was obtained. The direct use of altimetry-based river levels frequently led to overestimated flows and poorly identified feasible parameter sets (ENS,Q,5/95=-2.9–0.10). Similarly, converting modelled discharge into water levels using rating curves in the form of power relationships with two additional free calibration parameters per virtual station resulted in an overestimation of the discharge and poorly identified feasible parameter sets (ENS,Q,5/95=-2.6–0.25). However, accounting for river geometry proved to be highly effective. This included using river cross-section and gradient information extracted from global high-resolution terrain data available on Google Earth and applying the Strickler–Manning equation to convert modelled discharge into water levels. Many parameter sets identified with this method reproduced the hydrograph and multiple other signatures of discharge reasonably well, with an optimum of ENS,Q=0.60 (ENS,Q,5/95=-0.31–0.50). It was further shown that more accurate river cross-section data improved the water-level simulations, modelled rating curve, and discharge simulations during intermediate and low flows at the basin outlet where detailed on-site cross-section information was available. Also, increasing the number of virtual stations used for parameter selection in the calibration period considerably improved the model performance in a?spatial split-sample validation. The results provide robust evidence that in the absence of directly observed discharge data for larger rivers in data-scarce regions, altimetry data from multiple virtual stations combined with GRACE observations have the potential to fill this gap when combined with readily available estimates of river geometry, thereby allowing a?step towards more reliable hydrological modelling in poorly gauged or ungauged basins.
机译:在全球绝大多数河流盆地的地面测量的有限可用性增加了替代数据来源的价值,如水文建模中的卫星观察。本研究调查了使用远程感测的河水水平的潜力,即从多卫星任务,从多卫星任务中识别赞比亚半干旱琅勃波盆地水文模型的参数集。一个?分布式基于过程的降雨径流模型,具有子网格过程异质性,并在2002年至2016年的时间期间进行每日时间尺寸。作为一个?基准,使用传统模型校准来识别与观察到的传统模型校准的可行模型参数集河流排放数据。对于使用遥感的参数识别,来自重力恢复和气候实验(Grace)的数据在a?第一步是根据总储水中的季节性波动限制可行参数集。接下来,比较使用卫星高度时间序列进一步限制可行模型参数集的三种替代方式,使用沿河沿18个不同的位置序列。在校准的基准情况下,每日河流流动相对较好地再现ENS的最佳NASH-SUTCLIFFE效率,Q = 0.78(所有可行解决方案的5/95百分位数,Q,5/95 = 0.61-0.75)。当使用仅限恩典观察来限制参数空间时,假设不可用放电观察,获得INS的最佳Q = -1.4(ENS,Q,5/95 = -2.3-0.38)。直接使用基于Altimetry的河流水平经常导致过高的流量,并且识别不良的可行性参数集(ENS,Q,5/95 = -2.9-0.10)。类似地,使用具有每个虚拟站的两个额外的自由校准参数的电力关系形式的额定值曲线将建模的放电转换为水位导致放电和识别的可行性参数集(ENS,Q,5/95 = -2.6的过度估计-0.25)。然而,河流几何的核算证明是非常有效的。这包括使用从Google地球上可用的全球高分辨率地形数据提取的河横截面和梯度信息,并应用Strickler-Manning方程将建模放电转换为水位。使用该方法识别的许多参数集可合理地再现了水电照片和多个放电签名,具有ENS,Q = 0.60(ENS,Q,5/95 = -0.31-0.50)。进一步示出了更准确的河流横截面数据改善了水位模拟,在盆地出口处的中间和低流动期间的建模额定值曲线和放电模拟,其中提供了详细的现场横截面信息。此外,增加校准时段中用于参数选择的虚拟站的数量显着提高了在ΔSpatial拆分 - 样本验证中的模型性能。结果提供了稳健的证据,即在数据稀缺区域的较大河流中没有直接观察到的放电数据,来自多个虚拟站的高度标准数据与恩典观测相结合,当与河流几何易于获得的估计相结合时,可以填补这种差距。因此,允许逐步朝向更可靠的水文模型,在较差的较差或未吞噬的盆地中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号