...
首页> 外文期刊>Hydrology and Earth System Sciences >Assessment of spatial uncertainty of heavy rainfall at catchment scale using a dense gauge network
【24h】

Assessment of spatial uncertainty of heavy rainfall at catchment scale using a dense gauge network

机译:使用致密仪网络评估集水区压力降雨量的空间不确定性

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Hydrology and remote-sensing communities have made use of dense rain-gauge networks for studying rainfall uncertainty and variability. However, in most regions, these dense networks are only available at small spatial scales (e.g., within remote-sensing subpixel areas) and over short periods of time. Just a few studies have applied a similar approach, i.e., employing dense gauge networks to catchment-scale areas, which limits the verification of their results in other regions. Using 10-year rainfall measurements from a network of 150?rain gauges, WegenerNet (WEGN), we assess the spatial uncertainty in observed heavy rainfall events. The WEGN network is located in southeastern Austria over an area of 20 km × 15 km with moderate orography. First, the spatial variability in rainfall in the region was characterized using a correlogram at daily and sub-daily scales. Differences in the spatial structure of rainfall events between warm and cold seasons are apparent, and we selected heavy rainfall events, the upper 10 % of wettest days during the warm season, for further analyses because of their high potential for causing hazards. Secondly, we investigated the uncertainty in estimating mean areal rainfall arising from a limited gauge density. The average number of gauges required to obtain areal rainfall with errors less than a certain threshold (≤20 % normalized root-mean-square error – RMSE – is considered here) tends to increase, roughly following a power law as the timescale decreases, while the errors can be significantly reduced by establishing regularly distributed gauges. Lastly, the impact of spatial aggregation on extreme rainfall was examined, using gridded rainfall data with various horizontal grid spacings. The spatial-scale dependence was clearly observed at high intensity thresholds and high temporal resolutions; e.g., the 5 min extreme intensity increases by 44 % for the?99.9th and by 25 % for the 99th?percentile, with increasing horizontal resolution from 0.1?to 0.01°. Quantitative uncertainty information from this study can guide both data users and producers to estimate uncertainty in their own observational datasets, consequently leading to the sensible use of the data in relevant applications. Our findings could be transferred to midlatitude regions with moderate topography, but only to a limited extent, given that regional factors that can affect rainfall type and process are not explicitly considered in the study.
机译:水文和遥感社区已经利用了密集的雨水规范,用于研究降雨的不确定性和变异性。然而,在大多数区域中,这些密集的网络仅在小空间尺度(例如,在遥感子像素区域内)和短时间内的空间尺度。只有一些研究应用了类似的方法,即采用密集的仪表网络到集水区,这限制了对其他地区的结果的验证。使用150年的10年的降雨测量值为150?Rain仪表,Wegenernet(Wegn),我们评估了观察到的大雨事件中的空间不确定性。 Wegn网络位于奥地利东南部,面积20公里×15公里,适度的地理位置。首先,该地区降雨中的空间变异性是使用日常和次日尺度的相关性的相关性。温暖和寒冷季节之间的降雨事件空间结构的差异是明显的,我们选择了大雨事件,在温暖季节的最潮湿时期的10%,因为它们的造成危害的高潜力进一步分析。其次,我们调查了估计来自有限仪表密度的平均降雨的不确定性。获得不到某个阈值的错误降雨所需的平均仪表数(≤20%归一化的根均线误差 - RMSE - 在此考虑)趋于增加,大致跟随幂律随着时间尺度降低而导致的通过建立定期分布的仪表,可以显着降低误差。最后,检查了空间聚集对极端降雨的影响,使用具有各种水平网格间距的网格降雨数据。在高强度阈值和高时分辨率下清楚地观察到空间依赖性;例如,5分钟的极端强度为99.9分钟增加了44%,99th?百分位数增加了25%,水平分辨率从0.1增加到0.01°。本研究的定量不确定性信息可以指导数据用户和生产者估算自己的观察数据集中的不确定性,从而导致相关应用中数据的明智使用。我们的研究结果可以转移到中度地形的中间地区,但只有有限的程度,因为在研究中没有明确考虑可能影响降雨类型和过程的区域因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号