...
首页> 外文期刊>The FASEB Journal >High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy
【24h】

High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy

机译:高葡萄糖在分化和糖尿病肾病期间的人泛孔能量代谢

获取原文
           

摘要

Podocytes play a key role in diabetic nephropathy pathogenesis, but alteration of their metabolism remains unknown in human kidney. By using a conditionally differentiating human podocyte cell line, we addressed the functional and molecular changes in podocyte energetics during in vitro development or under high glucose conditions. In 5 mM glucose medium, we observed a stepwise activation of oxidative metabolism during cell differentiation that was characterized by peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α)–dependent stimulation of mitochondrial biogenesis and function, with concomitant reduction of the glycolytic enzyme content. Conversely, when podocytes were cultured in high glucose (20 mM), stepwise oxidative phosphorylation biogenesis was aborted, and a glycolytic switch occurred, with consecutive lactic acidosis. Expression of the master regulators of oxidative metabolism transcription factor A mitochondrial, PGC-1α, AMPK, and serine–threonine liver kinase B1 was altered by high glucose, as well as their downstream signaling networks. Focused transcriptomics revealed that myocyte-specific enhancer factor 2C (MEF2C) and myogenic factor 5 (MYF5) expression was inhibited by high glucose levels, and endoribonuclease-prepared small interfering RNA–mediated combined inhibition of those transcription factors phenocopied the glycolytic shift that was observed in high glucose conditions. Accordingly, a reduced expression of MEF2C, MYF5, and PGC-1α was found in kidney tissue sections that were obtained from patients with diabetic nephropathy. These findings obtained in human samples demonstrate that MEF2C-MYF5–dependent bioenergetic dedifferentiation occurs in podocytes that are confronted with a high-glucose milieu.—Imasawa, T., Obre, E., Bellance, N., Lavie, J., Imasawa, T., Rigothier, C., Delmas, Y., Combe, C., Lacombe, D., Benard, G., Claverol, S., Bonneu, M., Rossignol, R. High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy. mitochondria MEF2C human kidney Abbreviations: esiRNA endoribonuclease-prepared small interfering RNA LKB1 serine–threonine liver kinase B1 MEF2C myocyte-specific enhancer factor 2C mtDNA mitochondrial DNA mTOR mammalian target of rapamycin MYF5 myogenic factor 5 NRF-1 nuclear respiratory factor-1 oxphos oxidative phosphorylation PDK1 pyruvate dehydrogenase kinase 1 PGC-1α peroxisome proliferator-activated receptor-γ coactivator 1α PKM2 pyruvate kinase muscle type 2 TCA tricarboxylic acid TFAM transcription factor A, mitochondrial
机译:巨粒细胞在糖尿病肾病发病机制中发挥关键作用,但它们的新陈代谢的改变仍然在人肾中仍然是未知的。通过使用有条件地区分人的泛细胞细胞系,我们在体外发育期间或在高葡萄糖条件下解决了Podocyte能量学的功能和分子变化。在5mm葡萄糖培养基中,我们观察到在细胞分化期间逐步激活氧化代谢,其特征在于过氧化物体增殖物激活的受体-γ(PGC-1α) - 依赖性刺激线粒体生物发生和功能,伴随着糖醇类酶含量。相反,当在高葡萄糖(20mM)中培养孔胶质细胞时,中止逐步氧化磷酸化生物发生,并且发生了糖粘性开关,其中含有连续的乳酸性能。通过高葡萄糖改变氧化代谢转录因子的氧化代谢转录因子的氧化性代谢转录因子和丝氨酸 - 苏氨酸肝激酶B1的表达,以及其下游信号网络。聚焦的转录组织显示,通过高血糖水平抑制肌细胞特异性增强剂因子2C(MEF2C)和肌原因因子5(MYF5)表达,并制备的内衣核酸酶制备的小干扰RNA介导的RNA介导的与观察到的那些转录因子的联合抑制在高葡萄糖条件下。因此,在从糖尿病肾病患者获得的肾组织切片中发现了MEF2C,MYF5和PGC-1α的表达减少。在人类样品中获得的这些发现表明,MeF2C-Myf5依赖性生物植被消除剂发生在偶然的诱饵中,其面对高葡萄糖Milieu.-Imasawa,T.,Obre,E.,Bellance,N.,Lavie,J.,Imasawa ,T.,瑞克,C.,Delmas,Y.,Combe,C.,Lacombe,D.,Benard,G.,Claverol,S.,Bonneu,M.,Rossignol,R.高葡萄糖repatterns人泛细胞能量代谢在分化和糖尿病肾病期间。线粒体MEF2C人肾缩写:esiRNA上海核酸酶制备的小型干扰RNA LKB1丝氨酸苏氨氨酸肝激酶B1 MEF2C肌细胞特异性增强剂因子2C MTDNA线粒体DNA mTOR哺乳动物雷帕霉素MYF5肌源性因子5 NRF-1核呼吸因子-1氧化氧化磷酸化PDK1丙酮酸脱氢酶激酶1 PGC-1α过氧化物体增殖物 - 活化受体-γ共粘膜剂1αpkm2丙酮酸激酶肌肉型2 TCA三羧酸TFAM转录因子A,线粒体

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号