首页> 外文期刊>Phytobiomes Journal >Visualizing Glutamine Accumulation in Root Systems Involved in the Legume–Rhizobia Symbiosis by Placement on Agar Embedded with Companion Biosensor Cells
【24h】

Visualizing Glutamine Accumulation in Root Systems Involved in the Legume–Rhizobia Symbiosis by Placement on Agar Embedded with Companion Biosensor Cells

机译:通过放置嵌入伴伴生物传感器细胞的琼脂,可视化豆类根茎共生中涉及的根系中的谷氨酰胺积累

获取原文
           

摘要

Microbial symbiotic nitrogen fixation (SNF) occurs inside root nodules, where fixed-N (NH 4 + ) from rhizobia is first assimilated into the amino acid glutamine (Gln). Visualization of Gln dynamics in nodulated root systems of different plant species would require re-engineering transgenic Gln reporters specific for each rhizobia/host genotype. Here we demonstrate the use of companion biosensor cells called GlnLux ( Escherichia coli auxotrophic for Gln and constitutively expressing lux) to image Gln accumulation in nodulated root systems across a diversity of legume/rhizobia species. Companion GlnLux cells are embedded into agar ( GlnLux agar) upon which legume root systems are placed following freeze-thawing to cause Gln leakage. Photons released from nearby activated biosensor cells are captured using a photon capture camera. Using split root systems, we demonstrate that in diverse amide-exporting legumes (alfalfa, lentil, and green pea) and a ureide-exporting legume (soybean) that GlnLux agar imaging is sufficiently sensitive to detect Gln release from individual nodules and can differentiate root systems with active nif + from inactive nif? nodules. The assay permits visualization of both source and sink dynamics of nodule Gln, specifically, Gln import into nodules from roots (for nodule growth and/or amino acid cycling), Gln assimilated from fixed nitrogen that accumulates inside nodules, and Gln export from nodules into roots from this assimilatory-N. GlnLux agar-based imaging is thus a new research tool to localize the accumulation and transfer of a critical amino acid required for rhizobia symbionts within legume phytobiomes. We discuss the ability of this technology to open new frontiers in basic research and its limitations.
机译:微生物共生氮固定(SNF)发生在根结节内,其中来自根瘤菌的固定-N(NH 4 +)首先被同化在氨基酸谷氨酰胺(GLN)中。在不同植物物种的标注根系中的GLN动力学的可视化将需要重新工程用于每个根瘤菌/宿主基因型的转基因GLN报告者。在这里,我们证明了使用称为GLNLUX的伴侣生物传感器细胞(对GLN的大肠杆菌营养营养性,并且组成型表达LUX)以横跨豆类/根瘤菌种类的多样性在豆科植物系统中的GLN积累。伴随Glnlux细胞嵌入到琼脂(Glnlux agar)中,在冻融后放置豆科根系系统,以导致GLN泄漏。使用光子捕获相机捕获从附近活化的生物传感器单元释放的光子。使用分割根系系统,我们证明,在各种酰胺 - 出口豆类(苜蓿,扁豆和绿豆)中,Glnlux agar成像对从个体结节中检测Gln释放并分化根本的vere-exporting来自非活动NIF的活动NIF +的系统?结节。该测定允许可视化Nodule Gln的源和水槽动态,具体而言,Gln从根部进口到结节中(对于结节生长和/或氨基酸循环),Gln由积聚在结节内部的固定氮气和Gln出口到来自这种孤独-N的根源。因此,Glnlux agar的成像是一种新的研究工具,可以在豆类植物植物植物中的根瘤菌中,为根瘤菌中所需的临界氨基酸的累积和转移定位。我们讨论了这项技术在基础研究中开放新边界的能力及其限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号