...
首页> 外文期刊>Physiological Reports >Capacitance measurement of dendritic exocytosis in an electrically coupled inhibitory retinal interneuron: an experimental and computational study
【24h】

Capacitance measurement of dendritic exocytosis in an electrically coupled inhibitory retinal interneuron: an experimental and computational study

机译:电耦合抑制性视网膜内核中树突卵细胞增多症的电容测量:实验和计算研究

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Exocytotic release of neurotransmitter can be quantified by electrophysiological recording from postsynaptic neurons. Alternatively, fusion of synaptic vesicles with the cell membrane can be measured as increased capacitance by recording directly from a presynaptic neuron. The “Sine?+?DC” technique is based on recording from an unbranched cell, represented by an electrically equivalent RC‐circuit. It is challenging to extend such measurements to branching neurons where exocytosis occurs at a distance from a somatic recording electrode. The AII amacrine is an important inhibitory interneuron of the mammalian retina and there is evidence that exocytosis at presynaptic lobular dendrites increases the capacitance. Here, we combined electrophysiological recording and computer simulations with realistic compartmental models to explore capacitance measurements of rat AII amacrine cells. First, we verified the ability of the “Sine?+?DC” technique to detect depolarization‐evoked exocytosis in physiological recordings. Next, we used compartmental modeling to demonstrate that capacitance measurements can detect increased membrane surface area at lobular dendrites. However, the accuracy declines for lobular dendrites located further from the soma due to frequency‐dependent signal attenuation. For sine wave frequencies ≥1?kHz, the magnitude of the total releasable pool of synaptic vesicles will be significantly underestimated. Reducing the sine wave frequency increases overall accuracy, but when the frequency is sufficiently low that exocytosis can be detected with high accuracy from all lobular dendrites (~100?Hz), strong electrical coupling between AII amacrines compromises the measurements. These results need to be taken into account in studies with capacitance measurements from these and other electrically coupled neurons.
机译:通过突触后神经元的电生理记录可以量化神经递质的外递质释放。或者,可以通过直接从突触前神经元记录来测量与细胞膜的突触囊泡的融合。 “正弦?+ΔDC”技术基于由非支链电池的记录,由电等效式RC电路表示。将这种测量延伸到分支神经元症是挑战,其中患有卵尿溶在距体细胞记录电极的距离处。 AII Amacrine是哺乳动物视网膜的重要抑制性抑制性抑制性抑制因素,证据表明突触前叶形树枝状叶片的外尿精增加了电容。这里,我们将电生理记录和计算机模拟与现实的隔间模型组合以探讨大鼠AII氨基细胞的电容测量。首先,我们验证了“正弦?+βDC”技术以检测生理记录中的去极化诱发的外毒性症的能力。接下来,我们使用隔间模型来证明电容测量可以检测叶形树枝状叶片的增加的膜表面积。然而,由于频率依赖性信号衰减,从SOMA进一步地位于SOMA的叶形枝叶的精度下降。对于正弦波频率≥1ΩkHz,突触囊泡总可​​释放池的大小将被显着低估。减少正弦波频率会增加整体精度,但是当频率足够低时,通过从所有小叶树枝状(〜100·Hz)的高精度可以检测到卵尿量,AII amacrines之间的强电耦合会损害测量。这些结果需要在具有来自这些和其他电耦合神经元的电容测量的研究中考虑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号