首页> 外文期刊>Stem Cell Research & Therapy >TATA box-binding protein-related factor 3 drives the mesendoderm specification of human embryonic stem cells by globally interacting with the TATA box of key mesendodermal genes
【24h】

TATA box-binding protein-related factor 3 drives the mesendoderm specification of human embryonic stem cells by globally interacting with the TATA box of key mesendodermal genes

机译:TATA盒结合蛋白质相关因子3通过与关键中晶基因的塔塔盒的全局相互作用,驱动人胚胎干细胞的Mesendoderm规范

获取原文
       

摘要

Mesendodermal formation during early gastrulation requires the expression of lineage-specific genes, while the regulatory mechanisms during this process have not yet been fully illustrated. TATA box-binding protein (TBP) and TBP-like factors are general transcription factors responsible for the transcription initiation by recruiting the preinitiation complex to promoter regions. However, the role of TBP family members in the regulation of mesendodermal specification remains largely unknown. We used an in vitro mesendodermal differentiation system of human embryonic stem cells (hESCs), combining with the microarray and quantitative polymerase chain reaction (qRT-PCR) analysis, loss of function and gain of function to determine the function of the TBP family member TBP-related factor 3 (TRF3) during mesendodermal differentiation of hESCs. The chromatin immunoprecipitation (ChIP) and biochemistry analysis were used to determine the binding of TRF3 to the promoter region of key mesendodermal genes. The mesendodermal differentiation of hESCs was confirmed by the microarray gene expression profile, qRT-PCR, and immunocytochemical staining. The expression of TRF3 mRNA was enhanced during mesendodermal differentiation of hESCs. The TRF3 deficiency did not affect the pluripotent marker expression, alkaline phosphatase activity, and cell cycle distribution of undifferentiated hESCs or the expression of early neuroectodermal genes during neuroectodermal differentiation. During the mesendodermal differentiation, the expression of pluripotency markers decreased in both wild-type and TRF3 knockout (TRF3?/?) cells, while the TRF3 deficiency crippled the expression of the mesendodermal markers. The reintroduction of TRF3 into the TRF3?/? hESCs rescued inhibited mesendodermal differentiation. Mechanistically, the TRF3 binding profile was significantly shifted to the mesendodermal specification during mesendodermal differentiation of hESCs based on the ChIP-seq data. Moreover, ChIP and ChIP-qPCR analysis showed that TRF3 was enriched at core promoter regions of mesendodermal developmental genes, EOMESODERMIN, BRACHYURY, mix paired-like homeobox, and GOOSECOID homeobox, during mesendodermal differentiation of hESCs. These results reveal that the TBP family member TRF3 is dispensable in the undifferentiated hESCs and the early neuroectodermal differentiation. However, it directs mesendodermal lineage commitment of hESCs via specifically promoting the transcription of key mesendodermal transcription factors. These findings provide new insights into the function and mechanisms of the TBP family member in hESC early lineage specification.
机译:早期腐蚀期间的中胚层形成需要表达谱系特异性基因,而在该过程中的调节机制尚未完全说明。 TATA盒结合蛋白(TBP)和TBP样因子是负责转录开始的一般转录因子,通过募集促进复合物到启动子区域。然而,TBP家族成员在内蒙古规范调节中的作用仍然很大程度上是未知的。我们使用了人胚胎干细胞(HESC)的体外Mesendodermal分化系统,与微阵列和定量聚合酶链反应(QRT-PCR)分析,功能丧失和功能的增益,以确定TBP家族成员TBP的功能 - HESCS中的思想中的分化期间的重新定位3(TRF3)。使用染色质免疫沉淀(芯片)和生物化学分析来确定TRF3与关键中晶基因的启动子区的结合。通过微阵列基因表达谱,QRT-PCR和免疫细胞化学染色证实了HESC的中胚层分化。在HESC的中晶体分化期间,增强了TRF3 mRNA的表达。 TRF3缺乏不影响未分化的HESC的多能标记表达,碱性磷酸酶活性和细胞周期分布或神经分区分化期间早期神经分区基因的表达。在中胚层分化期间,多能性标记物的表达在野生型和TRF3敲除(TRF3?/α)细胞中减少,而TRF3缺乏率瘫痪了中畸形标记的表达。将TRF3的重新引入TRF3?/? HESC拯救抑制缺乏疏松的分化。机械地,基于芯片-SEQ数据,TRF3结合曲线显着转换为HESCS的中间晶体分化期间的中间晶体规范。此外,芯片和芯片 - QPCR分析显示TRF3富含核心发育基因的核心启动子区,eOMesodermin,Brachyury,混合配对的Homeobox,以及GooSeCoid Homeobox,在HESCS的分化过程中。这些结果表明,TBP系列成员TRF3可分配在未分化的HESC和早期神经分区分化中。然而,它通过特异性促进关键介体转录因子的转录来引导HESCS的Mesendododermal谱系承诺。这些调查结果对HESC早期谱系规范中TBP家族成员的功能和机制提供了新的见解。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号