...
首页> 外文期刊>Science Advances >Streptavidin/biotin: Tethering geometry defines unbinding mechanics
【24h】

Streptavidin/biotin: Tethering geometry defines unbinding mechanics

机译:链霉抗生物素蛋白/生物素:束缚几何形状定义了解除界定力学

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Macromolecules tend to respond to applied forces in many different ways. Chemistry at high shear forces can be intriguing, with relatively soft bonds becoming very stiff in specific force-loading geometries. Largely used in bionanotechnology, an important case is the streptavidin (SA)/biotin interaction. Although SA’s four subunits have the same affinity, we find that the forces required to break the SA/biotin bond depend strongly on the attachment geometry. With AFM-based single-molecule force spectroscopy (SMFS), we measured unbinding forces of biotin from different SA subunits to range from 100 to more than 400 pN. Using a wide-sampling approach, we carried out hundreds of all-atom steered molecular dynamics (SMD) simulations for the entire system, including molecular linkers. Our strategy revealed the molecular mechanism that causes a fourfold difference in mechanical stability: Certain force-loading geometries induce conformational changes in SA’s binding pocket lowering the energy barrier, which biotin has to overcome to escape the pocket.
机译:大分子倾向于以许多不同的方式响应应用力。高剪切力的化学可能是有趣的,具有相对柔软的粘合在特定的力负载几何形状中变得非常僵硬。在均衡技术中主要用于Bionanotechnology,一个重要的案例是链霉抗生物素蛋白(SA)/ Biotin相互作用。虽然SA的四个亚基具有相同的亲和力,但我们发现打破SA / Biotin键所需的力依赖于附件几何形状。利用基于AFM的单分子力谱(SMF),我们从不同的SA亚单元中测量了生物素的未绑定力,从100到400pn的范围。使用宽采法的方法,我们对整个系统进行了数百个全原子转向分子动力学(SMD)模拟,包括分子接头。我们的策略揭示了导致机械稳定性的四倍差异的分子机制:某些力量装载几何形状诱导SA的绑定口袋的构象变化,降低能量屏障,该生物素必须克服以逃避口袋。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号