首页> 外文期刊>Nonlinear processes in geophysics >The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are
【24h】

The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are

机译:太空天气/太阳能地理物理学的物理学(STP):我们现在所知道的以及当前和未来的挑战是什么

获取原文
       

摘要

Major geomagnetic storms are caused by unusually intense solar wind southward magnetic fields that impinge upon the Earth's magnetosphere (Dungey, 1961). How can we predict the occurrence of future interplanetary events? Do we currently know enough of the underlying physics and do we have sufficient observations of solar wind phenomena that will impinge upon the Earth's magnetosphere? We view this as the most important challenge in space weather. We discuss the case for magnetic clouds (MCs), interplanetary sheaths upstream of interplanetary coronal mass ejections (ICMEs), corotating interaction regions (CIRs) and solar wind high-speed streams (HSSs). The sheath- and CIR-related magnetic storms will be difficult to predict and will require better knowledge of the slow solar wind and modeling to solve. For interplanetary space weather, there are challenges for understanding the fluences and spectra of solar energetic particles (SEPs). This will require better knowledge of interplanetary shock properties as they propagate and evolve going from the Sun to 1 AU (and beyond), the upstream slow solar wind and energetic “seed” particles. Dayside aurora, triggering of nightside substorms, and formation of new radiation belts can all be caused by shock and interplanetary ram pressure impingements onto the Earth's magnetosphere. The acceleration and loss of relativistic magnetospheric “killer” electrons and prompt penetrating electric fields in terms of causing positive and negative ionospheric storms are reasonably well understood, but refinements are still needed. The forecasting of extreme events (extreme shocks, extreme solar energetic particle events, and extreme geomagnetic storms (Carrington events or greater)) are also discussed. Energetic particle precipitation into the atmosphere and ozone destruction are briefly discussed. For many of the studies, the Parker Solar Probe, Solar Orbiter, Magnetospheric Multiscale Mission (MMS), Arase, and SWARM data will be useful.
机译:主要地磁风暴是由撞击地球磁层(Dungey,1961)的异常强烈的太阳风南向磁场引起的。我们如何预测未来行星际活动的发生?我们目前是否知道潜在的物理学,我们有足够的太阳风现象观察,这将会影响地球的磁层吗?我们认为这是太空天气中最重要的挑战。我们讨论磁性云(MCS),截然型冠状物质质量喷射(ICMES)的行星鞘,电气调用区间(CIRS)和太阳能高速流(HSS)的磁云(MCS)。鞘和与Cir相关的磁场风暴将难以预测,并且需要更好地了解慢太阳风和建模以解决。对于行星际空间天气,了解太阳能粒子(SEP)的流利和光谱存在挑战。这将需要更好地了解行星际休克特性,因为它们的传播和发展从太阳到1 AU(及以后),上游慢太阳风和精力充沛的“种子”颗粒。戴斯蒂卫星,触发夜间代表品,以及新的辐射带的形成都可以通过冲击和行星际压力压迫在地球磁层上引起。相比磁体“杀手”电子的加速度和损失在引起正极和负电离层风暴方面的相比磁体“杀手”电子和迅速穿透电场是合理的理解,但仍需要改进。还讨论了极端事件的预测(极端冲击,极端太阳能粒子事件和极端地磁风暴(Carrington Events或更高))。简要讨论了大气中的精力颗粒沉淀和臭氧破坏。对于许多研究,帕克太阳能探头,太阳能轨道,磁体多尺度任务(MMS),Arase和Swarm数据将是有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号