...
首页> 外文期刊>mSphere >Genetic Evidence for Two Carbon Fixation Pathways (the Calvin-Benson-Bassham Cycle and the Reverse Tricarboxylic Acid Cycle) in Symbiotic and Free-Living Bacteria
【24h】

Genetic Evidence for Two Carbon Fixation Pathways (the Calvin-Benson-Bassham Cycle and the Reverse Tricarboxylic Acid Cycle) in Symbiotic and Free-Living Bacteria

机译:两个碳固定途径(Calvin-Benson-Bassham循环和反向三羧酸循环)的遗传证据在共生和自由生物细菌中

获取原文

摘要

Very few bacteria are able to fix carbon via both the reverse tricarboxylic acid (rTCA) and the Calvin-Benson-Bassham (CBB) cycles, such as symbiotic, sulfur-oxidizing bacteria that are the sole carbon source for the marine tubeworm Riftia pachyptila , the fastest-growing invertebrate. To date, the coexistence of these two carbon fixation pathways had not been found in a cultured bacterium and could thus not be studied in detail. Moreover, it was not clear if these two pathways were encoded in the same symbiont individual, or if two symbiont populations, each with one of the pathways, coexisted within tubeworms. With comparative genomics, we show that Thioflavicoccus mobilis , a cultured, free-living gammaproteobacterial sulfur oxidizer, possesses the genes for both carbon fixation pathways. Here, we also show that both the CBB and rTCA pathways are likely encoded in the genome of the sulfur-oxidizing symbiont of the tubeworm Escarpia laminata from deep-sea asphalt volcanoes in the Gulf of Mexico. Finally, we provide genomic and transcriptomic data suggesting a potential electron flow toward the rTCA cycle carboxylase 2-oxoglutarate:ferredoxin oxidoreductase, via a rare variant of NADH dehydrogenase/heterodisulfide reductase in the E. laminata symbiont. This electron-bifurcating complex, together with NAD(P)sup+/sup transhydrogenase and Nasup+/sup translocating Rnf membrane complexes, may improve the efficiency of the rTCA cycle in both the symbiotic and the free-living sulfur oxidizer. IMPORTANCE Primary production on Earth is dependent on autotrophic carbon fixation, which leads to the incorporation of carbon dioxide into biomass. Multiple metabolic pathways have been described for autotrophic carbon fixation, but most autotrophic organisms were assumed to have the genes for only one of these pathways. Our finding of a cultivable bacterium with two carbon fixation pathways in its genome, the rTCA and the CBB cycle, opens the possibility to study the potential benefits of having these two pathways and the interplay between them. Additionally, this will allow the investigation of the unusual and potentially very efficient mechanism of electron flow that could drive the rTCA cycle in these autotrophs. Such studies will deepen our understanding of carbon fixation pathways and could provide new avenues for optimizing carbon fixation in biotechnological applications.
机译:非常少量的细菌能够通过反向三羧酸(RTCA)和Calvin-Benson-Bassham(CBB)循环(例如共生,硫氧化细菌)来固定碳,这是海洋管疹的唯一碳源Riftia Pachyptila,生长最快的无脊椎动物。迄今为止,在培养的细菌中未发现这两个碳固定途径的共存,因此不能详细研究。此外,如果这两个途径被编码在相同的Symbiont,或者两个共生群体中,则目前尚不清楚,每个途径每种群体都有一个途径,则在管状中共存。对于比较基因组学,我们表明,硫莨菪碱Mobilis,一种培养的自由生物的γ硫氧化剂,具有碳固定途径的基因。在这里,我们还表明,CBB和RTCA途径可能在来自墨西哥湾深海沥青火山的Tubeworm Escarpia Laminata的硫氧化Symbiont的基因组中编码。最后,我们提供基因组和转录组数据,表明朝向RTCA循环羧化酶2-氧化氟化酸酯的潜在电子流动:富勒沙昔林氧化酶,通过E.Laminata Symbiont中的NADH脱氢酶/异硫化物还原酶的稀有变体。这种电子分叉复合物与NAD(P) + / sup>转氢酶和Na + 转移的RNF膜复合物一起,可以提高共生和中的RTCA循环的效率自由生物硫氧化剂。地球上的重要初级生产依赖于自养碳固定,这导致二氧化碳掺入生物质。已经描述了多种代谢途径用于自养碳固定,但假设大多数自养生物体仅具有这些途径中的一种基因。我们在其基因组中具有两个碳固定途径的培养细菌,使RTCA和CBB循环循环有可能研究具有这两个途径和它们之间的相互作用的可能性。此外,这将允许调查可以在这些自触发中驱动RTCA循环的电子流量的异常和潜在的高效机制。这些研究将深化我们对碳固定途径的理解,可以提供用于优化生物技术应用中碳固定的新途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号